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ABSTRACT

This research is concerned with the synthesis of a linear system

called a shaping filter which transforms a white noise input into a

possibly nonstationary output random process with a given auto-

correlation function. The determination of a shaping filter provides a

solution of the so-called factorization problem.

Conditions are developed which, if satisfied by an autocorrelation

function, guarantee a solution of the factorization problem. The method

of factorization requires the formulation of a matrix Riccati equation.

Coefficients of the shaping filter are easily related to a solution of the

Riccati equation. In order to formulate the Riccati equation, new results

concerning the mean-square differentiability of a random process are

developed and proved. Autocorrelation functions which admit factori-

zation are characterized by easily applied criteria which do not depend

explicitly on the non-negative definite condition, a condition necessarily

satisfied by any autocorrelation function.

An upper bound is derived which, if satisfied by the initial con-

dition for the Riccati equation, insures that the solution of the Riccati

equation, and hence of the factorization problem, is defined globally.

If the condition for a global solution of the Riccati equation is satisfied

and if the given autocorrelation function is bounded, then the shaping

filter will be stable in an appropriately defined sense.
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In order to broaden the class of autocorrelation functions which

admit factorization- cases are considered for which the Riccati equation

has an isolated singular point, and for which the Riccati equation is

undefined everywhere. In the former case, sufficient conditions are

developed which insure that the Riccati equation has a solution continu-

ous at the singular point. In the latter case, the factorization problem

has an algebraic solution.
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CHAPTER I

INTRODUCTION

1.1 Motivation

It is often convenient to model a random process as the result of a

linear filtering operation on stationary. white noise. Such a represen-

tation has proved invaluable when applied to many signal processing

problems, especially those associated with the theory of filtering and

estimation of random signals [ 1.1 - 1.6]. In such applications, the

given random signal or process is frequently specified only by its auto-

correlation function. For example, optimal estimation problems involving

a minimum mean-square error criterion invariably may be stated in terms

of appropriate autocorrelation and cross-correlations of given random

variables or process [1.7]. In such cases, the statistical description of

a random process given solely in terms of its second-order properties, i.e.,

its autocorrelation function, clearly suffices for the purpose of solving the

estimation problem.

A more physical description of a random process with a given auto-

correlation function employs a linear system called a shaping filter which

transforms stationary white noise into a process having the given auto-

correlation function. By introducing shaping filters, great simplicity has

been achieved in the formulation and solution of many estimation, filter-

ing, and prediction problems. Wiener [ 1.1] used the shaping filter



concept implicitly, and more recently, Darlington [1.9], Kalman and

Bucy [1. 6 , and others used it explicitly. Clearly, in order to under-

stand the generality or the limitations of a shaping filter description of

a random process, one must investigate the possibility of transforming

a statistical description of the process into a shaping filter description.

The so-called factorization problem, concerned with determining a

shaping filter from a given autocorrelation function, is the primary

subject of the present investigation.
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1. 2 Problem Formulation and Background

For stationary random processes, the factorization problem has

well-known frequency domain solutions. General solutions are given by

Wiener [1.1], and Doob [1.8], and solutions for the case of a rational

power spectral density are given by Wiener [1.1], and Bode and

Shannon [1.2]. In the latter case, the shaping filters may be realized

by the interconnection of a finite number of lumped elements. For

purposes of simulation or computation, the latter case has great practical

significance.

If the given autocorrelation function corresponds to a nonstationary

random process, the factorization problem becomes particularly interest-

ing and challenging. Although previous investigations of the nonstation-

ary factorization problem have met with varying degrees of success, the

problem has not been solved in general. A common assumption among

these investigations, as well as the present one, is that the random

processes under consideration are nonstationary analogues of those

considered by Bode and Shannon. In other words, a shaping filter is

represented either by a single linear differential equation of order n, or

more generally, by a set of first-order linear differential equations in

"state-variable" form with time-varying coefficients.

Among the first and most significant contributions to the solution

of the factorization problem is that of Darlington [1.9]. Darlington

assumed the existence of a single n-th order differential equation model
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for the shaping filter. Using the algebra of time-varying differential

operators, and a method analogous to that employed by Bode and Shannon,

he exhibited global solutions of the factorization problem, provided that

the time variations involved were suitably defined and restricted. The

coefficients of the shaping filter may be obtained from the solutions of a

related linear differential equation.

Batkov [1.10] , at about the same time as Darlington, proposed an

algebraic solution of the factorization problem. However, according to

Stear [1.11] , Batkov's method fails except in certain special cases.

R.P. Webb, et. al. [1.12], considered a state-variable solution of the

problem. Their solution too appears to be invalid except in special cases.

Other relevant investigations are those of Kalman [1.13], Stear

[1.11], and Anderson [1.14], and are concerned with state-variable

formulations. Although Kalman did not solve the factorization problem,

he was able to establish a formal definition of the problem. The results

of Stear and Anderson, although derived by different methods, are similar

and appear to provide a first step in demonstrating the existence of a

factorization for the general nonstationary case.

A shortcoming common to all these investigations in that they fail,

in varying degrees, to relate the existence of a shaping filter to appro-

priate properties of the autocorrelation function. That is, the question

of how to characterize the class of autocorrelation functions which admit

factorization has thus far gone unanswered. The present investigation
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may be regarded as an attempt to develop a formal realizability theory

for shaping filters having a state-variable representation. A factori-

zation technique is presented based on a set of criteria to be satisfied

by an autocorrelation function, and leading to a shaping filter with real-

valued coefficients.
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1. 3 Summary

The state-variable representation of a system is more general than

a single n-th order differential equation representation because the

latter representation implies that a stringent observability condition

must be satisfied by the system. In Chapter II, a state-variable model

without feedback is derived for the shaping filter. The factorization

problem is defined with respect to this model, and appropriate properties

of the output autocorrelation function are derived.

A factorization technique valid on a finite interval is developed in

Chapter III. By assuming that the autocorrelation function is sufficiently

differentiable, the coefficients of the shaping filter are related to the

solutions of a matrix Riccati differential equation. In order to formulate

the Riccati equation, new results concerning the mean-square differenti-

ability of a random process are developed and proved. By utilizing a set

of linear constraints, the order of the Riccati equation may be reduced.

If the shaping filter can be represented by a single n-th order differential

equation, then the reduced Riccati equation, which is non-linear, may be

transformed to a linear differential equation valid on the entire interval

of interest. The order of this linear equation is the same as the order of

the equation considered by Darlington.

.Since the Riccati equation is non-linear, its solutions may have a

finite escape time. In Chapter IV, conditions are developed which

insure that a solution of the Riccati equation, and hence a shaping filter,
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exists globally. An important global property is stability. Stability of

the shaping filter is defined in the sense that a square-integrable input

produces a bounded output. If the given autocorrelation function is

bounded, the shaping filter will be stable in the sense described pro-

vided that the conditions for a global solution of the Riccati equation

are also satisfied. One of the most interesting results obtained provides

a characterization of the autocorrelation functions which admit factori-

zation. The characterization, related to the factorization technique

employs a set of easily applied criteria. These criteria do not depend

explicitly on the non-negative definite condition which, as is well-known,

must be satisfied by any autocorrelation function.

In Chapter V, the class of autocorrelation functions under con-

sideration is broadened. Cases are considered for which the Riccati

equation has an isolated singular point, and for which the Riccati equation

is undefined everywhere on an interval. In the former case, conditions

are established which insure that the Riccati equation has a solution

which is continuous at the singular point. In the latter case, the factori-

zation problem has an algebraic solution. Autocorrelation functions in

this category include those corresponding to random processes which may

be represented exactly by a truncated Karhunen-Loeve expansion.
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CHAPTER II

THE STATE-VARIABLE MODEL

2.0 Introduction

This chapter introduces the definitions and mathematical

limitations relevant to the treatment to follow and presents some

basic results which help to define the factorization problem in a

simple and concise fashion. Although many of the results discussed

in this chapter are known, the proof of Theorem 2.1 and the results

which conclude Section 2.3 do not seem to have appeared in the

literature previously.



2.1 Representation of the Shaping Filter

The class of shaping filters to be considered includes those

which may be represented by the set of linear differential equationst

i(t) = A(t) z(t) + B(t) u(t) (2. la)

y(t) = Ct(t) z(t) . (2.lb)

The input u(t) is a real-valued r-vector (column matrix) repre-

senting a zero mean white noise process, so that

E[u(t)u t (r)] = I6(t-7) , (2.2)

where E denotes expectation, I is an r x r identity matrix and 6(t- 7) is

the unit impulse "function". The "state" z(t) is an n-vector, and the

output y(t) is a scalar. The coefficients A, B, and C are conformable,

real-valued matrices of appropriate order which generally vary with time.

The shaping filter corresponding to equation (2.1) is assumed to be

casual, i.e., non-anticipative. A block diagram of (2.1) appears in

Figure 2-1.

The class of systems represented by (2.1) generate random

processes which in general, are nonstationary analogues of the random

processes considered by Bode and Shannon [2.1]. That is, if the co-

efficients A, B, and C are constants (for all time) and if the shaping

The superscript t will be used to denote' matrix transposition and the
symbol i(t) the first derivative of z(t). When the context is clear, the
explicit dependence of a function on its argument will be suppressed.
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B(t) + Z C (t) 0y(t)

A --

FIG. 2-I STATE-VARIABLE MODEL OF A SHAPING FILTER.
HEAVY ARROWS INDICATE VECTOR-VALUED
QUANTITIES.
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filter corresponding to equation (2.1) is stable, then, in the steady state,

the output process y(t) is stationary and its power spectral density is a

rational function of frequency.

Equation (2.1) represents a system which may be realized by the

interconnection of a finite number of linear, lumped, time-variable

elements. Furthermore, equation (2.1) is the most general representation

of such a system.t

Despite the generality of (2.1), it is convenient to recast this

equation and represent the system without feedback of the state variables.

Let U(t) be a fundamental matrix solution [2.3] of equation (2.la); that

is, U(t) is an everywhere nonsingular solution of the associated homo-

geneous equation

t(t) = A(t) U(t) (2.3)

If a new state vector x(t) is defined by

z(t) = U(t) x(t) , (2.4)

the system (2.1) may easily be transformed to

k = 0 u (2.5a)

y = t x , (2.5b)

where the matrix 0 is given by

O(t) = U-'(t) B(t) , (2.6)

t The case where there is a direct connection from input to output is ex-

cluded from consideration here since techniques somewhat simpler than

those developed in the present work may be used to accommodate the

case of a direct connection [2.2].
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and the vector 0(t), by

0 t(t) = ct(t) U(t) . (2.7)

A block diagram of (2.5) appears in Figure 2-2. If z(t o ) represents an

initial value of the state variable in equation (2.1) then the response

of the shaping filter to an input u(t) may be written as

y(t) = C (t) U(t) U-(to) z(to) + Ct(t) U(t) U- (r)B(T)u(T)d " (2.8)
to

or, in terms of the quantities in (2.5), as

t
y(t) = t(t) 0 (t)(to) + 0 (t) 0(r) u(T) dr (2.9)

to

The representations of the shaping filter in equations (2.1) and (2.5) are

equivalent, as is well known [2.4]. The shaping filter has the impulse

response

0 (t) 0(7) for t > 7

h(t,7) = (2.10)
0 for t < 7

as is evident from (2.9). The function h(t,7) is an r-vector, where r

is the dimension of the input u(t).

Although the shaping filter representation in (2.5) is general and

mathematically convenient, it is often unsuitable for practical simulation.

For example, asymptotic stability of the state variable is not generally

preserved by transformation (2.4). However, the theory of equivalent

systems is sufficiently well developed to indicate when the system repre-

sented by equation (2.5) has an equivalent but practical realization

[2.5, 2.61.
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(t (y(t)

FIG. 2-2 STATE-VARIABLE MODEL OF A SHAPING FILTER WITH
FEEDBACK ABSENT. HEAVY ARROWS INDICATE
VECTOR-VALUED QUANTITIES
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2.2 The Factorization Problem

In what follows, it should be assumed that the initial value of

the state variable x o = x(t o) is derived from a zero-mean random

variable uncorrelated with the white noise input u(t). The output y(t)

is then a real-valued, zero-mean random process with autocorrelation

function

r(t,,7) = E [y(t) y(7)] (2.11)

For purposes of analysis, one may calculate r(t,T) in terms of

the coefficients 0(t) and P(t) in a straightforward way [2.7]. If (2.9)

is written as
t

y(t) = t(t) Xo h(t,r) u(r) d (2.9a)
to

then r(t,7) may be expressed as

r(t, ) = E [(t + h(t,X)u(X)dA O(T)xo+J h(,)u( )d). (2.12)
to to

Since, by assumption,

E u(t) x o ] = 0 , (2.13)

the autocorrelation function in (2.12) becomes

t T
r(t,r) = 0(t) E[xoXc]0(t)+ h(t,,)h(T,rg)6(X-)ddX (2.14)

to to

where the impulse function in the integrand results from (2.2).

Assume that for the moment that t > 7. Performing the inte-

gration with respect to the variable F in:(2, 14) yields

r(t,T) = 0t(t) E[oxot ] (T) + t h(t,X)ht(T,X)dX .
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However, the shaping filter is assumed to be causal, which

implies that h(r,k) = 0 for all X > 7r. Therefore the upper limit t of

the above integral may be replaced by 7 .

In terms of a matrix M(t) defined by

M(t) =E [xxot I t (X) Pt (X)dX, (2.15)
to

the autocorrelation function is

r(t,r) = 0t(t) M(r)0(7) , (2.16)

for t > 7r. For 7 > t, the above development may be repeated to yield

r(t,") = t (t )M(t)t) (r) . (2.17)

Thus, combining (2.16) and (2.17), we have

r(t, 7) = 0t(t) M[min(t,7).,]0(7) (2.18)

One may easily verify that the matrix M(t) is the covariance matrix

of the state vector, i.e.,

M [min (t,7)] = E [x(t) xt()] , (2.19)

where x(t) is the state vector of the shaping filter. The salient pro-

perties of M(t) are stated in the following Lemma, which generalizes a

result of Doob [2.8].

Lemma 2.1. Let a covariance matrix M be defined as in equation

(2.19). Then M is symmetric and

(a) M(t) t 0, for all t

(b) M(tz) - M(tl) t 0, for all tz t tl .

tFor real symmetric matrices A and B, the matrix inequality A B means

that the matrix (A-B) is non-negative definite.
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Proof: Symmetry of M(t) follows by equating t and 7 in equation

(2.19).

To prove (a), let v be an arbitrary real-valued n-vector and note

that vtx(t) is a real scalar-valued random process. Then

vt M(t) v = vt E [x(t) xt(t)]v = E [(vt (t))] > 0

Part (b) is established as follows.

0 < E [(x(tz) - x(t)) (x(t2) - X(t 1 )t

SE [x(tl) x(ti)] + E [ x(tz) xt(t)] - E [ x(t) xt(tz)] -E [ x(t) xt(t)]

= M(tz) - M(tl).

The last equality follows from (2.19)

Note that M(t) as defined by equation (2.15) is differentiable, so

that from the previous Lemma, 1M(t) > 0.

Definition 2.1. A symmetric, differentiable, real-valued matrix

M(t) will be called admissible if M(t) is non-negative definite, and

non-decreasing.

The development above makes clear that admissible. matrices will

play a crucial role in what follows. According to (2.18), the function

r(t,7) bears a simple relation to the state variance matrix M(t). This

simple relation is exploited in the following Theorem, in which several

important properties of r(t,7) are derived.
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Theorem 2.1. Let the relation

r(t, ) = 0 t(t) M[min (t,7) ]0() ,

where M(t) is an admissible matrix, define a function r(t,7). Then

r(t,7) satisfies the following:

Al. r(t,7) is separable; i.e., there exist real-valued vectors

0 (t) and y(t) such that

¢Ot(t) Y(7), for t > r

r(t,) t(7) (t), for t< 7, (2.20)

A2. r(t,T) is symmetric; i.e.,

r(t,7) = r(7,t)

and

A3. r(t,7) is non-negative definite; i.e., for any choice of instants

tl 5 t? ! ... t m , for any choice of scalars a,, az, ... a m , and

for any finite integer m, the following quadratic form is non-

negative:
m m

Q = ai r(ti , tj) aj 0 . (2.21)
i=1 j=1

Proof: The first assertion follows by equating.

Y = M . (2.22)

Symmetry is apparent by inspection of (2.18). In order to prove the

third assertion, define matrices A,, A 2 , ... m as
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, = M(t) ,

Ak = M(tk) - M(tk-,), for k = 2, ... m

Then the quadratic form Q becomes

m m mm
Q X ai r(ti, tj)a = a t (t i ) M[min (ti, t )] 0(t) a j

i=1 j=1 i=1 j=1

m m m m

S ai 1(ti)I (tj) + i0t(ti)A z(t) +... +amt (tm)Am
i=1 j=1 i=z j=z

A typical term in the above sequence of summations is

m m

S ai ¢t(ti) Ak (tj) aj (2.23)
i=k j=k

Since M(t) is admissible by hypothesis, each of the matrices Ak, for

k = 1,2 ,.. m, is non-negative definite. Therefore, as is well known

[2.9] , Ak possesses a generally non-unique, real-valued square-root

matrix. Ak2 so that Ak Ak = Ak. Let Ok(ti) = Ak 0(ti). In terms

of Ok, equation (2.23) becomes
amm I (m t2

Ia k (ti) k(t.) a = aI k(ti) 0 o
i=k j=k i=k

where fI " I denotes the Euclidean norm. Therefore, the quadratic form

Q is a sum of non-negative quantities and is hence itself non-negative.

The first assertion of the above Theorem reflects the fact that the

shaping filter is a linear system having a finite dimensional state space.
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The second and third assertions indicate that r(t,7) is an autocorrelation

function. Indeed, it is well known that an arbitrary function r(t,T7) is an

autocorrelation function if and only if r(t, ') satisfies A2, and A3 of

Theorem 2.1 [2.10].

The following Corollary, an important consequence of Theorem 2. 1,

is the well-known Schwarz inequality for random variables.

Corollary 2.1. Let y(t) and y(7) be real. scalar-valued random

variables, and let r(t,7) = E [y(t) y(7)]. Then

[r(t,)] z  r(t,t) r(,T7)

Proof. Let m=2, tj = t, and tz = 7 in assertion A3 of Theorem 2.1.

In the preceding discussion, a model of a shaping filter was defined

and some statistical properties of its state vector and output were derived.

The interesting and important problem is to proceed the opposite way; i.e.,

given an autocorrelation function r(t,7), determine the quantities x o ,

¢(t) and 0(t) which define the shaping filter model of (2.5). The deter-

mination of these quantities will provide a solution to the so-called

factorization problem. Factorization may be defined formally as follows:

Definition 2.2. A function r(t,T) satisfying conditions Al, and A2 of Theo-

rem 2.1 admits a factorization if there exists a random process y(t)

such that

r(t,) = E [y(t) y() ,

where y(t) is generated at the output of shaping filter modelled by (2.5).
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The following Theorem is now relevant, since it summarizes some

of the main points of this section. It is similar to a Theorem stated by

Kalman [2.7]

Theorem 2.2. A function r(t,7r) satisfying conditions Al, and A2 of

Theorem 2.1 admits a factorization if and only if there is a vector

¢(t) and an admissible matrix M(t) such that

r(t,7) = t (t) M [min (t,,)]0(T) ,

in which case r(t,7) also satisfies condition A3.

Proof: The "only if" part of the theorem follows directly from

Lemma 2.1 and Theorem 2.1.

To prove the "if" part of the theorem, note that since M(t) is

assumed to be admissible, M(t) > 0. Therefore, a real-valued square-

root matrix f(t) exists so that

t.
(t) Bt(t) = M(t)

Hence the coefficients of the shaping filter are determined. If t=to is

chosen as the initial time, then a random initial value of the state xo

may be chosen from an ensemble for which

E [ x ot .= Mo = M(to)

If the rank of Mo is at most unity, then it may be possible to assign a

deterministic value to xo .

Although the above specification of the matrix 1(t) may not be
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unique, a shaping filter defined in terms of this quantity will generate

a random process y(t) possessing the specified autocorrelation function.

Implicit in Theorem 2.2 is the fact that if r(t,7) can be shown, by

any means, to admit factorization, then from Theorem 2.1, r(t,7) must

be an autocorrelation function. This consideration will be explored further

in Chapter IV.

In order to proceed with the factorization problem, it is assumed

that a function r(t,7) is given satisfying the conditions:

Al. r(t,T) is separable

A2. r(t,T) is symmetric, and

A3. r(t,T) is non-negative definite.

It will suffice to restrict attention to the case for which t 7r.

Then, from Al, there exist functions 0(t) and y(t) such that

r(t,T) = 0 t(t) Y(7) , for t T . (2.24)

The functions 0 and y are vector-valued with dimension n, where n

determines the order of the shaping filter model in (2.5).

If r(t,7) is to admit factorization, then r(t,7) must satisfy (2.18),

so that

0 (t) Y(7) = t (t)M (r)0(T) . (2.25)

Assume that the n components 0 1(t), ... , On(t) are linearly independent

on T, the interval of interest, and assume a similar condition for the
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components of the vector 7. If such were not the case, then 0 and y

might be replaced by vector-valued functions of lower dimension such

that equation (2.24) remains valid. In view of the assumed linear

independence of the components of ¢(t) in particular, the t and 7

variations in (2.25) may be equated with the result that Y and 0 are

related by

y(t) = M(t) (t) . (2.26)

Equation (2.26) may be regarded as the basic equation to which an

admissible matrix solution M(t) must be sought in order to solve the

factorization problem and obtain the desired shaping filter.

Before investigating equation (2.26) in generality in Chapter III,

we will consider a suggestive special case in the next section.

t Unless otherwise specified, T represents a finite open interval.



25

2.3 First-Order Shaping Filter

A first-order shaping filter is defined by requiring the given

functions ¢(t) and Y(t) to be scalar-valued. The coefficient 0(t) will

then be scalar-valued. This case is important primarily because its

simplicity lends insight to the general case. Although the first-order

case is relevant to the factorization problem, a detailed study of this

case actually appears in the classic paper of J. Mercer [2.11] which

treats the theory of integral equations. The development below is based,

in part, on Mercer's work.

For a first-order shaping filter the autocorrelation function

satisfies

¢(t) y('r), for t 7

r(t, T) = (2.27)

O(7) Y(t) for t < 7

where ¢(t) and Y(t) are now scalar-valued and the variables t and 7 are

allowed to vary over an open interval (a,b), where a or b, or both, may be

infinite. Denote by E the set of points in (a,b) for which neither O(t) nor

Y(t) vanish. Then a scalar valued function M(t) may be defined as

, (t)
M(t) - 0 (t)

on the set E.

In terms of M(t), the autocorrelation function may be expressed

as

r(t,7) = 0(t) M [min (t,7)] 0(() , (2.28)
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which is the scalar version of (2.18).

Since r(t,7) is an autocorrelation function, r(t,7) must satisfy con-

dition A3. In particular, r(t,t) must be non-negative, i.e.,

r(t,t) - 0 (2.29)

for t in (a,b), and r(t,T) must satisfy the Schwarz inequality

r(t,t) r( ,r7) - rz(t,7r) t 0 (2.30)

for t and T in (a,b). Equation (2.29) implies that

r(t,t)
M(t) =- (t, ) 0, (2.31)

while (2.30) implies that

r(t,t) r(7,r) - r 2(t, 7) = [0(t) 0 () ]2 M(7) [M(t) - M(7)] 0 ,

for t > 7. Therefore M(t) is non-decreasing and non-negative on the

set C . If in addition M(t) is differentiable, then M(t) is admissible

on Z.

The following discussion, based on Mercer's work [2.111,

establishes some preliminary results which will allow the domain of

definition of M(t) to be extended to points outside of the set

Consider the points at which either (or both) of the functions

0 (t) and Y (t) becomes zero, i.e., suppose that r(T,7) = 0 at some

point r in (a,b). Then with t an arbitrary point in (a,b), equation

(2.30) becomes

r(t,t) r(T,r) - rZ(t,r) = -r(t,r) 0
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Thus

r'(t,,7) = r(T,t) = 0 (2.32)

for all t in (a,b) if r(T,7) = 0 for some 7 in (a,b). Equation (2.32)

implies that either 0 (7) or Y(7) or both become zero. We will show

that the location of the point 7 in (a,b) determines which of the

functions O(7) or Y(7) vanishes.

Let a o = inf L, and s = sup E, and consider the intervals (a,a),

(oro ,s), and (s,b) where a t o < s 5< b, as illustrated in Figure 2-3.

Suppose r(r,r) = 0 and T is in (a,ao). Clearly, there is a point t in S

such that t> T . But (2.27) and (2.32) imply that

r(t,7) = 0(t) Y(7) 0 .

Since 0(t) does not vanish for t in E, then y(T) = 0 for 7 in (a,o).

Now, suppose that r(r,7) = 0 where 7 is in (s,b). Then there is

a point t in Z such that t <r . Equations (2.27) and (2.32) imply that

r(t,7) = 0(r) y(t) = 0 .

But y(t) does not vanish for t in E; hence (7r) = 0 for r in (s,b).

If r (7,7) = 0 and 7 is in ((0, s), then there are points t in E both

to the left and to the right of 7 . The arguments previously employed

imply that both O(T) = 0 and y(7) = 0 if 7 is in (o,,s). Note that such

points T are not in E.

Using a development beginning with Mercer's results above, we

will now show that the domain of the function M(t) may be extended to
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M(t.)

I
/

I

FIG. 2-3 ILLUSTRATING TYPICAL BEHAVIOR OF THE COVARIANCE M(t)
DEFINED ON THE SET I (SOLID CURVE), AND A NON-UNIQUE
EXTENSION TO POINTS NOT IN : (DASHED CURVE). T IS
DENOTED BY HEAVY LINES, AND BOUNDARY POINTS OF .
BY %, , ... S.
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include the half-open interval [To, s). The functions 0(t) and y (t) are

now assumed to be continuous on (a,b). We show first that the domain

of M(t) may be extended to include the points of C, the set of all points

of E, and all boundary points of E. The results which follow do not seem

to have appeared in the literature previously.

The boundary points of E may be ordered as

oo<...< ai< ' **< s

where ao and s, defined previously, are also boundary points of .

Since s is a boundary point of C, then for any E > 0, there exists a

point X in E such that I s-X < c . Also, since neither 0(X) nor y(X)

vanishes, because X is in E, the ratio

y X)
M) (X)

is finite. Moreover, from (2.31), M(t) is surely non-negative for t in

(a,b). Hence, if t r X and t is in E , then

0 : M(t) M(X)

Therefore, if c i is any boundary point of E such that ai < X , then

lim M(t) (2.33)
t -ai

exists, since M(t) is bounded and monotone on C . But X may be chosen

arbitrarily close to s, so that M(t) is defined on the set - s). Note

that for some points oi, it may be appropriate to consider (2.33) as both

a right and a left-hand limit, as would be the case if ai were both a
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right-hand and left-hand boundary point of C . In Figure 2-3, (r3 is such

a boundary point. Although both limits (2.33) will exist, there is no

assurance that the right-hand and left-hand limits will be equal, and

M(t) may have a simple discontinuity at ri. An analogous phenomenon

is possible in the n-th order case, and this will be investigated in Sect-

ion 5.1.

Incrder to complete the extension of the domain of M(t) to the

interval [oo, s), we must consider points t of [a o, s) which are not in C,

but for which r(t,t) = 0. Clearly, t is not an isolated point for that would

imply that t is a boundary point of C. Therefore, t must lie in a closed

interval [ai,a i +1], where ai and ai+ 1 are boundary points of E, and

r(t,t) = 0 for all t in [ai,(ji+1]. But t is in (a o , s), so that the previous

discussion implies that ¢(t) = Y(t) = 0. Hence, an arbitrary value may be

assigned to M(t) for all t in [ai,ai+1 ] without violating (2.28). The

argument above may be applied to all such intervals [ai,ai+1] in order to

extend the domain of M(t) to include the entire interval [ao,s) . If M(t) is

admissible for t in E, and if M(t) exists at all limit points of E except

(perhaps) s, then the extension of M(t) may be chosen to be admissible

on [o ,s). The dotted curves in Figure 2-3 illustrate possible extensions

of M(t).

If M(t) is admissible then M(t) > 0. The input multiplier (t) is

now a scalar to be evaluated as

(t) = [ [M(t)] 2
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Thus a shaping filter model is determined for all t in [(a , s). An initial

time for generating the random process may be any point to in [oa ,s).

An initial value of the state variable xo may be chosen in two ways in

the first-order case. Either a deterministic value may be chosen such

that

= M(to)

or xo may be considered a random variable with covariance

E [xo 3 = M(to)

If the functions ¢(t) and y(t) happen to be proportional, then M(t)

is a constant, and 3(t) = 0. In this case the shaping filter is autonomous,

that is, it has no input except the initial value xo which may be deter-

ministic, and the random process y(t), given by

y(t) = x o 0(t)

may be deterministic. This phenomenon also occurs in the n-th order

case and will be discussed further in Section 5 .2.

If the points s and b coincide, the above analysis indicates that

a shaping filter may be realized on [ao, ,b). If b is infinite then the

realization of the shaping filter is global. If the points s and b do not

coincide, the existence of a shaping filter on (s,b) cannot be guaranteed.

This matter will be explored for the n-th order case in Chapter IV.

The following example concludes this chapter. This example is

not intended to display practical utility, but is chosen to illustrate in a
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simple case the extension of the function M(t).

Example 2.1. Let

r(t, T) = 7 cos 7 cos t, for t > .

Then 0(t) = cos t, and y(t) = t cos t. The interval of interest is

(0, ). The set E consists of all points in (0,-) except for

t= (2n-1)fr/2, n= 1,2, .... The function M(t) may be evaluated as

Y(t) t cos t
M(t) - t

0 (t) cos t

for t in E. The points t = (2n-1) IT/2 are boundary points of E.

Since the functions 0(t) and y(t) are everywhere continuous, the pre-

vious discussion implies M(t) = t everywhere on (0,m). Clearly, M(t)

is admissible, and hence, r(t,T) is an autocorrelation function. The

following equations describe the shaping filter.

x(t) = + u(t)

y(t) = x(t) cost

The initial condition x o must satisfy

E [x] = to

If the initial time is chosen as to = 0 then the initial condition

becomes xo = 0 with probability one.
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CHAPTER IIIt

REALIZATION OF THE SHAPING FILTER:

LOCAL EXISTENCE

3.0 Introduction

In the previous chapter, basic equation (2.26) was derived and it

was shown that a solution of this equation determines the coefficients of

a shaping filter. The object of the present chapter is to present a general

technique for solving equation (2.26) and to investigate in detail the

conditions for existence of a real-valued solution. One of the main

additional assumptions to be introduced in this chapter is that the input

to the shaping filter is scalar valued, that is, attention will be given to

a single input (and single output) shaping filter. This assumption is

introduced for several important reasons. First, for purposes of simu-

lation by analogue or other means, the requirement of a single white-noise

generator is simpler and less costly than the requirement of many such

generators. Second and perhaps most important, the formulation of many

problems involving detection or filtering of signals is greatly facilitated

by introducing not only a shaping filter, but also a whitening filter, i.e.,

that system which performs an operation inverse to that performed by the

Some of the results presented in this chapter have appeared earlier in

a paper by the author and H.E. Meadows [3.11.
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shaping filter [3.2, 3.3, 3,47. The whitening filter accepts at its input

a possibly nonstationary random process y(t) with a specified auto-

correlation function and produces at its output a stationary white-noise

process u(t).

Figure 3-1 illustrates a typical application of a whitening filter

in the problem of optimum prediction of a random process y(t). The

whitening filter converts y(t) into white-noise u(t), and the signal

processor converts u(t) into y(t+ a), the minimum mean-square error

estimate of the predicted value of y(t). Evidently, from Figure 3-1, the

signal processor may itself be regarded as a shaping filter, so that the

optimum predictor is a tandem connection of a whitening filter and a

shaping filter. In order fully to exploit the simplicity of the predictor

model, the whitening filter should have a single output; i.e., the white-

noise process u(t) should be scalar valued.

As will be shown, the factorization technique developed in this

chapter is applicable to a very large class of autocorrelation functions.

For practical purposes, the assumption of a single input to the shaping

filter is therefore not restrictive.

If the input u(t) is scalar valued, the coefficient matrix 0(t)

becomes an n-vector. Then, according to (2.15), the basic equation

(2.26) may be regarded as n non-linear Volterra integral equations in

which the coefficients l3(t), ... On(t) appear as unknowns. This

approach was explored by Stear [3.51. Although the scope of Stear's
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work is limited in the sense that conditions for the existence of real-

valued solutions to the integral equations are not related to relevant

properties of the given autocorrelation function, his investigation does

demonstrate an approach for realizing a time-varying shaping filter

represented by (2 5).

A different approach presented in this chapter has proved quite

fruitful. It will be shown that under certain appropriate and general

conditions on the autocorrelation function, the basic equation may be

converted to a matrix Riccati differential equation. The solution of this

differential equation is the state covariance matrix M(t), and real-

valued coefficients of the shaping filter (t) may be obtained

algebraically from M(t).
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3.1 The Derivative of a Random Process

Some new results concerning the existence of a derivative of a

random process will be presented in this section. These results are

pertinent to the factorization problem because a parameter defined

shortly associated with differentiability of the process is used in

determining the coefficients of the shaping filter.

The concepts of mean-square convergence and mean-square

differentiation are defined below.

Definition 3.1. A sequence of random variables Yn converges in

mean-square to a random variable y if and only if

lim E[(yn-y) z ] = 0

The above limit is sometimes written

1.i.m. y,=y ,

denoting "limit in the mean."

Definition 3.2. Let y(t) be a random process for which E[y(t)1 <

for all t in T, an interval of interest. The process y(t) has a

derivative in the mean-square sense, denoted by (t) or y(1) (t), at a

point t in T if

l.i.m. y(t+h) -y(t) =(t)

h-O h

where t+h is in T.
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For brevity, the process y(t) will simply be called the derivative of

y(t).

A well-known condition for the existence of a derivative of a

random process is stated in the following Theorem. The proof, due to

Loeve [3.61,is omitted.

Theorem 3.1. y(t) has a derivative at t in T if and only if the

function

r(t, 7)

exists and is finite at the point (t,t), and r(t,7) = E[y(t) y()].

Theorem 3. 1 is difficult to apply,as the following example

indicates.

Example 3.1. Let r(t,r) = elt-I . This is the form of the auto-

correlation function of a random process y(t) appearing at the output

of a single time-constant, R-C low-pass filter excited by white

noise.

Then

a2 r(t,) =-e- I

for all t 7 . One might be tempted to assume that the above

equality represents E[y(t)y(T)]; however such is not the case. As

will be verified later in this section, the correct expression for the

autocorrelation function of y(t) is
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E[y(t) (7)]= -e - I  + 28 (t- ) ,

which does not exist in the classical sense. Therefore, the random

process corresponding to r(t,7) is not mean-square differentiable.

We shall show that for a random process possessing an auto-

correlation function with continuous partial derivatives, a more easily

applicable differentiation criterion is available.

Assume that the autocorrelation function may be written in

separable form as

f et(t) y(T) for t T
r(t, ) = t () (t) for t < (3.1)

0 (T)Y(t) for t < T

and that the vector-valued functions ¢(t) and Y (t) are continuously

differentiable. Define a function d? (t) as

dz(t)= 0 t(t) .(t)- t(t) y (t) . (3.2)

The function dz (t) may be regarded as the variance of a random variable,

and is therefore non-negative,as the following Lemma shows.

Lemma 3.1. Let y(t) be a random process with an autocorrelation

function expressed by equation (3.1), and let do(t) be defined by

equation (3.2). Then

(t) = lim E[(yct') - y(t) z  0
S t'-t t' - t

for t' > t .
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Proof. Consider the quadratic form

Qr(tt) r(t,t') 1
Q= [1 -1] () ,

t) r(t',t') 1

which is nori-negative because r(t,7) is non-negative definite by

assumption. Then

Q= [1 -1] Ery(t)J y(t) y(t') 

y(t)
= E [1 -1] y(t'= E(y(t') - y(t))z

y(t')

Therefore, for t' > t,

S0
t' -t

and if the limit exists,

lim Q 0
t' -t t' -t

Substituting (3.1) into the definition of Q and dividing by t'-t yields

Q _ 0t (t') [y(t') - (t)]- [ 0(t') -0(t)] y(t)
t' -t t' - t

lim (t') - 0(t) lim Y(t') - (t)
Since 0(t) =t' t t' - t and (t) = t t' -t

it is clear that

d (t) = < Q
St - t t - t

Therefore, d (t) exists and is non-negative.
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According to Lemma 3.1, d (t) is either positive or zero for any

time t. If d?(t) = 0 then the following Theorem applies.

Theorem 3.2. Let y(t) be a random process having an auto-

correlation function expressed by equation (3.1) and let d (t) be

defined by (3.2). Then y(t) is differentiable at a point t if and only

if do(t) = 0.

Proof. To prove the "only if" part, note that if y(t) exists, then

E[(y(t') - y(t)) ]

Ery (t)= lim [(< yt)
tl t  (t' -t)

Because of the continuity hypotheses in (3.1), the above equation

may be expressed as

dE[j(t)lmd(t) + (t' ,t)E [y (t) ] I
t'-. t - t

where

lim E(t',t) = 0
t' -t

Therefore the variance, E [yZ(t)], is finite only if d (t) = 0. To prove

the "if" part we shall show that r(t,T) exists and is finite at

7 = t, if do(t) = 0. Let t be fixed and let r vary. Consider the con-

tinuous function ~ r(t, 7). From (3.1),at

a r(t,) t(t) (r) for t > 7

St 1 t(r)(t) for t : T
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If do(t) = 0, then -r(t, 7) is a continuous function of 7 at the

point T =t. Since the functions O(t) and Y(t) are continously

differentiable, the function r(t, ) has both a left-hand and right-

hand derivative with respect to 7 at the point 7 = t. These

derivatives are equal and their common value is

lim r(t, 7) = (t) V (t)
T-t

Note that since the functions (t) and >(t) are assumed to be con-

tinuous, then

82 a2r ( t ,7T ) - r(t,7)

for all t and r in T. Therefore, by Theorem 3.1, the existence of

the mixed partial derivative of r(t,T), evaluated at 7= t, implies the

existence of the derivative process, y(t).

In the above Theorem and previous Lemma, the convenient but

unnecessary assumption was made that r(t,7) is separable. If this

assumption is removed, then d (t) must be redefined as

d(t) = r(t,) - r(t,r) , (3.3)
T=t

where r approaches t through values T < t, Lemma 3.1 remains valid

under this extended definition of d (t). If it is assumed that the function

r(t, 7) is continuous and that the functions r(t,) t r(t,r), and

at r(t,T) exist and are continuous for all t and r such that t 7 ,
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then Theorem 3.2 remains valid, and the proof requires only trivial modi-

fication. All further results in this section will be stated assuming a

separable autocorrelation function. However, the general case may be

accommodated by slight modification of these results.

Theorem 3.2 has some important corollaries which will be used in

the sequel. These corollaries require index functions df (t) to be defined

as follows.

df(t) = 0(it) t i+ ) (t) - (+0 )(t) (i) (3.4)

Corollary 3.1. Let the functions 0 and 7 possess at least k continuous

derivatives. Then a random process y(t) has a k-th derivative, y(k) (t)

at a point t if and only if the functions d2 (t), d (t), ... d (t) are

all zero at t. Then, if k+l derivatives of 0 and Y exist, thus allowing

dZ (t) to be defined, the inequality dk(t) 0 is valid at the point t.kzk

Finally, if y(k) (t) exists for all t, then E[y (k ) (t) y(k) (r) k kr(t, T),

for all t and 7 .

Proof. The first and second assertions follows from the previous

theorems and by induction on k. The last assertion follows from a

Theorem of Loeve([3.6] , p 471).

The statement of the next Corollary concerns the existence of a

matrix Rk(t) whose i,j-th element is defined below.

-The k-th derivative of a random process or function f(t) will be denoted

by f (k(t).
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i+j
[Rk(t) lij = 1 r(t,") (3.5)

at a1
'f =t

where 0 5 i, j s k, and T approaches t through values T < t

Corollary 3.2. Let the functions 0 and y possess at least k

derivatives, and let df(t) = 0 for i = 0,1, ... k-l. Then the matrix

Rk (t) is well-defined, symmetric, and non-negative definite.

Proof. From Corollary 3. 1, the derivatives y(i) (t), for

i = 0,1, ... k, exist. Therefore

- i i r(t,T) < m

at T =t

and from the Schwarz inequality,

E[y(i) (t) y(j)(t) E[ y (i(t))2] E (yj) (t)n< .

Hence Rk(t) is well-defined.

Define a vector Yk(t) as

Yk(t) = col. [y(°)(t) y() (t) y(k)(t) ] (3.6)

The previous results imply that

Rk(t) = E [Yk(t) Yk t (t)], (3.7)

which is obviously symmetric. Let v be an arbitrary (k+l)-vector. Then

v Yk(t) is a scalar-valued random variable and

vt Rk(t) v = E [(vt Yk_(t)] 0,

.which completes the proof.
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It is possible that a matrix Rk(t) may be defined even if the

hypotheses of Corollary 3.2 are violated, but it is generally true that if

y(k) (t) does not exist, the matrix Rk(t) will be neither symmetric nor non-

negative definite. The following example illustrates this remark.

Example 3.1 (continued).

r(t,7) = e-

Let ¢(t) = e-t and Y(t) = e . Substituting these functions into

equation (3.2) yields d?(t) = 2. Therefore, the random process y(t)

corresponding to the specified autocorrelation function is not

differentiable. The matrix Ro(t) reduces to the scalar r(t,t) = 1 > 0

The matrix R1(t) exists and may be evaluated as

e- t-T e- I t- -1

e- I t -lt- e- 1 =t -11-=t

which is neither symmetric nor non-negative definite.

The following Corollary, which follows immediately from the pre-

ceding ones, uses the previously established results in order to formulate

conditions which must be satisfied by an autocorrelation function.

Corollary 3.3. Let 0 and 7 possess a sufficient number of continuous

derivatives and let a function r(t, 7) be defined as in equation (3.1).

Let di(t) - 0 for all t and all i, 0 < i k-1, and let dk(t) be non-
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zero everywhere. Then, necessary conditions for r(t,T) to be an

autocorrelation function are that d (t) > 0 for all t and Rk (t) 0 for

all t.

It will be shown in Chapter IV that the conditions stated in the

previous Corollary are sufficient as well as necessary, provided that

r(t,7) is separable.

The results obtained thus far in this chapter are applicable to both

separable and non-separable autocorrelation functions. We now assume

that r(t,T) is separable and furthermore, that if r(t,7) admits factori-

zation, the shaping filter is realizable with a scalar-valued input. These

assumptions allow the index functions di (t) to be related to the coef-

ficients of the shaping filter.

Recall the basic equation,

y(t) = M(t) ¢(t) , (3. 8a)

where

M = 0B , (3. 8b)

and 0 is vector-valued by assumption of a single input.

The following Lemma relates the index function di(t) to the

coefficients 0(t).

Lemma 3.2. Let r(t,7) be a separable autocorrelation function and

let 0 (t) and y(t) possess at least k+1 continuous derivatives. Let

df(t) - 0 everywhere for 0 <i 'k-i and let d2(t) 0 everywhere.
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Then di(t) = 0it (t) 0(t) for all t and for all i, 0 ! i 5 k.

Proof. The assertion is proved by repeated differentiation of basic

equation (3.8). Differentiating (3.8a) and pre-multiplying the result

by 0t results in

¢t = 0t M  + ¢t K4 . (3.9)

Pre-multiplying the basic equation by 0t yields, since M is

symmetric,

t = t M  = t M  . (3.10)

Subtracting (3.10) from (3.9) produces

d2 = Ot _ ty = Ot MO ¢

= t 0 0t ' (to)Z = 0

which vanishes by hypothesis. Thus

y= M + MI = M + (/t 0)

or

= M , (3.11)

everywhere. The results of operating on (3.11) just as on (3.8) above

are

di(t) = 0 (t) (t) = 0 ,

and one considers next the equation

(2) = M O(

etc. Continuation of the sequence of operations obviously yields
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di(t)= (i)t(t) P(t) = 0 for 0 ri <k-1 (3.12a)

and for all t. The procedure described above terminates at the next

step, which yields

dk( (t kt (t) (t)) > 0 (3.12b)

where the inequality follows from Corollary 3. 1.

If the impulse response of the shaping filter is denoted by h(t,T),

the result just proved may be stated as

di(t) = - h(t,7) , for 0 9i ' k
tl 7=t

If r(t,7) admits factorization, then the index function dk(t) has an interest-

ing physical interpretation. Let the hypotheses of Lemma 3.2 hold and

let the equations

S= u (3.13a)

y = t (3.13b)

describe the shaping filter. Corollary 3.1 allows equation (3.13b) to be

differentiated k times. Thus

y( M =t x + 0t x = 0t x + (t p)u = t x + do u

or

) = tx , (3.14)

and

y() = (2)t x + di u = ()x .
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Similarly,

y(i) = (i)t x, for 0 !i S k (3.15)

Proceeding formally, one may perform an additional differentiation

(actually forbidden by Corollary 3.1) to obtain from (3.15) the following

equations:

S= 3 u (3.16a)

y(k+1) _ (k+1)t x+ dku . (3.16b)

Equation (3. 16) may be regarded as a state-variable model for a shaping

filter which transforms white-noise, u(t), into a process denoted by

y(k+1) (t). Since the function dk(t) 0 for all t, the process y(k+)(t)

will contain a white-noise component for all t, and the autocorrelation

function of y(k+1) (t) will contain an impulse. The autocorrelation of

y(k+1) may be computed using, in part, the results of Section 2.2, and

some results of Newcomb and Anderson [3.71 which treat shaping filters

with a direct connection from input to output. Integrating equation

(3.16a) yields
t

(t) = xo + (X) u(X) dX
to

Then the cross-correlation of state vector and input is

t

E [x(t) u()] =E [xo u(T)] + () E[u() u()] dX

~3P() for t > 7

0 for t < r
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Since E [x(t) xt()] = M [min (t,7)], the autocorrelation function

E [y(k+1) (t) y(k+)()] = E[((k+l)t (t) x(t) + dk(t) u(t))

0 (k+') (7) x(r) + dk(r) U(r) ,

may be evaluated in terms of the unit step function S (t) as

E [y(k+l) (t) y(k+1) (,)] (k+1) (t) M[min(t, 7)] 0(k+l)t (C)

+ d (t) 8(t-) + 0(k1) t (t) (7) dk( ) S(t - 7)

+ ¢(k+1)t (7) f(t) dk(t) S(,r- t) (3.18)

Note that if 0 (k+ and (k+ exist then (k+1) r(t) exists for
S(k+a )

a k+ r(t,r) b ~(k)(t) M(T) 0(k)(r)atk+ i k6 ri xst f

= (k+)t(t) M(7) 0 (k+) + ¢(k+1)t (t) f(t7) dk()

A similar equation by be derived if t < 7.

In terms of the above expression, equation (3. 18) may be

rewritten as

2(k+1)
E y(k+1)(t) y(k+1) (,)] k1

k+1 k+1 r(t,")+dk(t) 6(t-7). (3.19)
at 67

From equation (3. 19), the quantity dk(t) may be interpreted as

the "instantaneous power" associated with the white noise component
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of y(k+lt).

The following examples illustrating several results derived

above, will conclude this section.

Example 3.1 (continued).

Let ¢(t) = e and y(t) = e We have shown that do (t) = 2.

The basic equation (3.8) becomes

t _t
e = M(t) et

which has the unique solution M(t) = e2t, M(t) is admissible accord-

ing to Definition 2. 1, and

1 t
3(t) [M(t)] 2 = /2 e

The autocorrelation function of the process y(t) may now be computed

by means of (3.18) as

E [y(t) y(T)] = -e- t-I + 26 (t-7)

The instantaneous power associated with the white-noise component

of y(t) is 2 watts.

Example 3.2. Let r(t,r) = f(t) + f(T), where f(t) is differentiable.

Let

0(t) =

and

S(t) f(t)
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The functions do(t) and dl(t) may be evaluated using equation (3.4)

and do (t) = di(t) = 0 for all t . The matrix R1(t), defined by equation

(3.5) may be expressed as

2 f(t) (t)
R (t) = t)

and det R1 (t) = -f (t) < 0. Therefore, Corollary 3.3 implies that

r(t,r), as given above, is not an autocorrelation function.

Example 3.3. Let r(t,7) = ct(t) A (7r), where A is a constant

diagonal matrix for which [ A]ii = Xi ! 0. Then A is an admissible

matrix, and from Theorem 2.1, r(t,7) is an autocorrelation function.

Assume that the function ¢(t) is differentiable an arbitrary number of

times. Then d i (t) 0 for i = 0,1,....

Define a matrix cPk(t) as

Dk(t ) = [¢(o) (t) 0 ') (t)... 0(k) ]

Then Rk may be written

t
Rk = k k

Clearly, Rk(t) t 0 on T for k = 0, 1, ....

This example exhibits a class of autocorrelation functions for

which di(t)= 0 for all i t 0. It will be shown in Chapter V that the

representation r(t,T) = Ot(t) A 0(7r) exhausts the class of auto-

correlation functions for which di(t) = 0 for all i ! 0
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3.2. Local Solutions of the Factorization Problem

In this section, we will show that the state convariance matrix,

M(t), may be obtained as a solution of a matrix Riccati differential

equation. The desired random process y(t) is assumed to commence at

a finite time and to have finite duration. Although these assumptions

have practical motivation, since any experiment or simulation procedure

must have finite duration, they are introduced primarily for analytical

convenience. The latter assumption will be relaxed in Section 4.1.

The finite interval of interval of interest is denoted by T, and

the autocorrelation function r(t,7) is prescribed on a square T x T, and

is assumed to satisfy conditions Al - A5 which follow.

Al. r(t,r) is separable

A2. r(t,7) is symmetric

A3. r(t, 7) is non-negative definite

A4. The given functions O(t) and Y(t) possess at least k+l

continuous derivatives on T

A5. di(t) - 0 on T, for 0 i k-1

dk(t) 0 everywhere on T

Recall that conditions Al - A3 were defined more completely in Theorem 2. 1.

The results of the previous section become valid on a finite interval by

tT xT denotes the set of points in the t,T plane where both variables t

and T are restricted to the interval T.



56

replacing "everywhere" with "everywhere on T."

As a notational convenience, the following matrices are

introduced.

Gk(t ) = [ 0(o)(t ) (t ) ... (k)(t) (3.20a)

rk(t) = [() (t) y(1(t) ... y(k)(t) ] (3.20b)

The matrices 4k and Tk may be related by a simple expression

which involves the function dk. This relationship, stated in Lemma 3.3

below, will be useful in developing the main results of this section.

Lemma 3.3. Let r(t,7) satisfy conditions Al-A5. Denote by el

the (k+l)-dimensional unit vector which contains zeros in the first k

positions, and unity in the last position. Then

(k+1)t (k+1)t k = et d
Sek k = dk

Proof. Consider the identity

y(k)t (i) = (k)t>(i , for 0 : i k-1 ,

which is valid for all t in T from Corollary 3.2. Differentiating this

identity yields

(k+)t (i) (k)t 1) (k)t (i+l) (k+1)t (i)

Corollary 3.2 implies that the terms adjacent to the equal sign are

identical. Hence

y(k+1)t (i) = 0 (k+1)t (i) , for 0 i < k-1

For i = k, the Lemma is obviously valid by definition of d2 .
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The main results of this section concern: the existence of a

solution of the factorization problem. These results are stated below.t

Theorem 3.3. Let r(t,T) satisfy conditions Al -A5. Then the

following assertions are valid.

(i) If y(t) = M(t) 0(t) on T, where M(t) is symmetric and rank of

M(t) - 1, then M(t) satisfies the following Riccati

differential equation:

(= (k+1) _ MO(k+1))((k+1) _ M 0 (k+l)t . (3.21)

(ii) Let Mo be any symmetric non-negative definite matrix

which satisfies

k (to) = Mo k (to) * (3.22)

If M(t) is the solution of equation (3.21) having the initial

value M(to) = M o , then M(t) is admissible and

Tk(t) = M(t) Dk(t) for all t in a neighborhood of to

Furthermore, the coefficient (t) may be evaluated as

(k+1) (k+1)t (t) - M(t) 0 (t) (3.23)
dk (t)

tAlthough derived independently, the methods used to obtain the results

stated in Theorem 3. 3 are essentially the same as those employed by
Anderson [3.8 , who obtained similar results for the special case
k = 0.
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Proof. (i) The proof of the first part of the theorem follows directly

from the proof Lemma 3.2, where the following equations were

derived:

(k) = M (k)

and

dk (k)

Differentiating the former equation yields

(k+1) = M ¢(k+1) + _A ¢(k)

Since M is symmetric and rank (M) < 1, M may be expressed as

M = 0 33t. Then

( k + ) = M 0 (k+1)+ t 0(k)

or

,(k+) _ M (k+1)

dk

Post-multiplying this expression for 0 by its transpose yields the

desiredRiccati differential equation.

(ii) The second assertion will be proved by exhibiting a

homogeneous linear differential equation, the solution of which is a

vector of dimension n(k+l) which has as components, the columns

of the matrix Fk - M k .

Consider the right-hand side of the following identity:

d
d( - M )=(k- Mk) - M k

Substituting equation (3.21) for M yields
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(- M k) - (k k+1))(Y(k+)t 4k-(k+1)t M 4k)

(Tk - M 4 k) d2k

If the quantity 0(k+l)t k is added and subtracted inthe right-most

parentheses, the following expression results.

(k+1) (k+1 / (k+1)t (k+l)t (kA Dt,
Fk - M ) - (7( -M (k+))(7 k -0 rkltk + 0k JtkMDk))

d?

By invoking Lemma 3.3, this expression simplifies to

(Pk_-M) _(Y(k+,)_M(k+)) Fe t + (k+)t
kM) 1 (1k - M ck)

dz

which may be expanded as

d k+1) (k+1)
dt(T k -M k) = [-Mk k-(yk _M k+ )elt]

(y(k+1)_ M (k+1)) (k+1)t

d (rk- M k). (3.24)
k

Define a matrix A as

A -(k+1) (k+) (k+')t

and let qi denote the i-th column of the matrix Fk - M Pk. From the

standard existence theorem for ordinary differential equations [3.9],

the matrix A defined in terms of M exists only in a neighborhood of

the point t= to . In terms of A and qi , (3.24) may be rewritten as

the following set of differential equations.
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qo = Aqo + ql

91 = Aql + qz

(3-25)
qi = Aqi + qi+1

qk = Aq k

Equation (3.25) may be abbreviated further. Let an n(k+l)-vector

be defined as

t t t
q = col [q q ... qk '

and let A be a square matrix of order n(k+l). The matrix A is to

be partitioned into square submatrices of order n. The submatrices

on the main diagonal are set equal to A. The submatrices on the

super diagonal are identity matrices. All other elements of A are

zero. In terms q and A, (3.25) becomes simply

= Aq (3.26)

According to the hypothesis of Theorem 3.3, the initial condition for

(3.26) is q(to) = 0. Since (3.26) is linear, it has the unique solution

q(t) = 0 for all t in the neighborhood of to for which the matrix M(t)

exists.

The matrix M(t) is admissible. because MO is non-negative

definite and symmetric, and M may be expressed as an outer product

03 t , where f, from (3.23), is real-valued.

Therefore, the matrix M(t), obtained as a solution of the Riccati
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equation, satisfies the basic equation (3.8). The coefficient 3,

evaluated from (3.23) provides a solution to the factorization

problem.

Thus far, the existence of an initial condition matrix Mo satis-

fying (3.22) has only been postulated. That its existence is not obvious

is apparent from the following consideration. In order for (3.22) to be

valid, it is necessary that the matrices 'k(to) and 4k(to) are consistent

in the sense that rank (Fk(to)) ! rank (Ok(to)) at some point to in T. For, if

this rank condition is violated there can be no matrix MO satisfying (3.22).

It is demonstrated below that the above rank condition is valid at points

dense in T, and furthermore that (3.22) has a (non-unique) solution M(to)

which is symmetric and non-negative definite.

The following Lemmas will be used to demonstrate the existence

of a covariance matrix M(t o ).

Lemma 3.4. Let r(t,r) satisfy conditions Al -A5. Then the non-

negative definite matrix Rk(t), defined in equation (3.5), is non-

singular at points dense in T.

Proof. The Lemma will be proved by contradiction. Assume that Rk(t)

is singular everywhere on a subinterval T' of T. Since the elements

of Rk(t) are continuous on T by hypothesis, there exists a continuous

vector a(t):
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a(t) = col [a o (t) a (t) ... ak(t)

where a(t) is non-zero everywhere on T', such that

a Rka - 0, on T' . (3.27)

Using (3.7), this identity may be written

E [(at Yk)] 0 on T',

where Yk was defined by (3.6). Therefore

a Yk 0 on T'

with probability one. Assume for the present that the component ak(t)

is non zero on T'. Hence, by normalizing the vector a(t) so that

ak(t) 1,
k-i

y(k) (t) = ai(t) y(i)(t)
i=o

everywhere on T'. Differentiating this linear constraint yields an

expression of the form

k

y(k+1) (t) = bi(t) y(i) (t) , (3.28)
i=o

where the functions bi denote linear combinations of the functions ai

and the derivatives a i . In order to verify that the vector a(t) is

differentiable, note that from equation (3.5) and Corollaries 3.1 and

3.2, Rk may be expressed as

Rk = k Fk (3.29)

Since Dk and rk are differentiable by condition A4, it follows from
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(3.27) that a(t) is differentiable.

Equation (3.28) implies that y (k+) (t) exists on T'. Therefore,

from Corollary 3.1, dk(t) = 0 on T', which violates assumption A5.

Hence, the matrix Rk(t) is not singular on any subinterval of T.

We now dispense with the assumption that the leading coef-

ficient ak(t) be non-zero on T'. However, because ak(t) is

continuous on T', then either ak(t) must be non-zero on some sub-

interval T" of T', or else ak(t) = 0 on T'. If the former is the case,

then the previous argument may still be applied for t restricted to

the subinterval T". Suppose the contrary, that ak(t) m 0 on T'. Let j

be the largest integer such that a (t) is not zero anywhere on I, a

subinterval of T'. Certainly, such an aj(t) exists since the vector

a(t) is continuous and never vanishes anywhere on T'. By normalizing

a(t) so that aj(t) is unity on I, we have

j-i

y() (t) = ai(t) y(i) (t)
i=o

for all t in I with probability one. By differentiating this expression

(k+ l-j) times, an expression for y(k+) (t) is obtained, which is

similar to that in (3.28), and is valid on I. The previous argument

may then be applied to establish the Lemma.

An important consequence of Lemma 3.4 is that from (3.29),

rank ('Dk) = rank (rk) = k + 1, at points dense in T.
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Lemma 3.5. Let r(t,7) satisfy conditions Al -A4 and let the

integer k, appearing in A4, be unspecified. If di(t) = 0 on T, for

i = 0,1, . .. n-l, then di(t) a 0 on T, for all i t 0.

Proof. If di(t) = 0 on T, for 0 i < n-l, then Corollary 3.1 implies

that y( (t) exists, where 0 <i < n. Corollary 3.2 implies that Rn(t)

exists and that

t
Rn(t) = (t) rn(t)

But, the matrices 4n and Fn each have n rows. Therefore

rank (Rn) n , and since the order of Rn is (n+ 1), Rn(t) is singular

everywhere on T. Hence, from the proof of Lemma 3.4, dn(t) = 0 on T.

The assertion then follows by induction.

The significance of Lemma 3.5 is that it places an upper bound on

the number of computations one is required to perform in the sense that

one need never differentiate a function more than n times nor consider a

vector of dimension greater than n.

We now proceed to demonstrate the existence of a covariance

matrix Mo satisfying (3.22).

Theorem 3.4. Let r(t,7) satisfy conditions Al -A5. Then there exists

a covariance matrix Mo satisfying (3.22) at a point to , where to may

be arbitrarily close to a point t, selected arbitrarily in T.

Proof. If t is an arbitrary point in T, then Lemma 3.4 implies that
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there is a point, to , arbitrarily close to t, such that the matrix

-1Rk(to) is positive definite. Then, Rk (to) has an inverse Rk (to)

which is positive definite. Let a matrix M o be defined as

Mo = rk (to) Rjk (to) rkt (to) (3.30)

Then clearly, M o is symmetric and non-negative definite. (In fact,

from Lemma 3.5, rank (Mo) = k+1.) Since Rk(to) is symmetric,

(3.29) implies

Rk =4k rk k= k

Therefore,

O-1(t (to)R(to) t
M k (t) = k (t) R (t) k (to) k(to) = k(to) Rk (to) Rk(to)

= rk (to)

Hence, if M o is chosen as in (3.30), then M o satisfies (3.22), and

M o is a covariance matrix.

The matrix M o given by (3.30) is the unique matrix of minimum

rank which satisfies (3.22). For, suppose that some covariance matrix,

M(to), satisfying (3.22), has rank less than k+ 1. Since

k (to) = M (to) (to)

then rank (Fk(to)) < k+l, which contradicts Lemma 3.4. Therefore M(to )

cannot have rank less than k+ 1. Suppose M(to) is an arbitrary covariance

matrix of rank (k+ 1) satisfying (3.22). Then M(to) may be written in the

general form
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M (to) = F Rk(t o ) Ft , (3.31)

where the matrix F has n rows and (k+ 1) columns and has rank (k+ 1).

Pre-, and post-multiplying equation (3.31) by Dk and k respectively,

yields

rk = F R' (F t (k) , (3.32)

and

Rk = ( rcF) R- 1 (Ft k) (3.33)

Equation (3.33) implies that

R (Pt r t CRk = k  kF = F k

and therefore, from (3.32), F = k . Hence Mo given by (3.30) is the

unique covariance matrix of rank (k+ 1) satisfying equation (3.22).

One should not conclude from the above discussion that there is

only one covariance matrix satisfying equation (3.22). If the rank of

M(to) is unspecified, then there are an infinite number of covariance

matrices M(to) satisfying (3.22). The following Corollary will exhibit

the general form of a matrix M(to).

Corollary 3.4. Let r(t,7) satisfy conditions Al -A5. Let M o be

defined by (3.30), and let No be an arbitrary covariance matrix

satisfying

No k (to) = 0

Then the matrix M(to) = Mo + No is a covariance matrix satisfying
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(3.22). Furthermore, any covariance matrix satisfying (3.22) may be

expressed as Mo+ No. The matrix M(to) satisfies

k+ 1 5 rank (M(to)) n

Proof. Let V be an arbitrary matrix consisting of n rows and

(n-k- 1) columns. Then, a set of non-unique elements of the matrix

V may be determined as a solution of the equation

Vt k (to) = 0

Define No as

No = VV t

No is recognized as the Gramian matrix of vectors which are rows of V.

Therefore No is a covariance matrix satisfying No k (to) = 0,

rank (No) = rank (V), and 0 5 rank V : n-k-1. Therefore, if

M(to) = Mo + No , then

k+1 r rank (M(to)) n

Since

M(to) k(to) = M o Ok(to) + vvt k(tO)

= Mo k(to) = k (to ) o

equation (3.22) is satisfied.

Conversely, let M(t o ) be any covariance matrix satisfying (3.22).

Let Mo be defined as before, and now define No as

No = M(to) - Mo

Then clearly,
No k(to) = 0 .
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Let w be an arbitrary n-vector. Since

k (to) k (to) = Rk(to)

is a non-singular matrix, then rk (to)w = 0 if and only if w is

orthogonal to the columns of 4k (t o ). Since M(to) is a covariance

matrix, then

0 wt M(to) wt = w (Mo + No)w = wt No w

if w is orthogonal to the columns of 4Ik(to) If w = w, + w2 , where

w, is orthogonal to and w2 is contained in the subspace generated by

the columns of (Dk (to), then Nowz = 0 so that

w No w = wl t No w l, 0

for any vector w. Therefore No is a covariance matrix.

This section will be concluded by considering several examples.

Example 3.4. Let diZ (t) = 0 on T for 0 < i 9 n-2 and let d-_ 1 (t) >0

on T. Then on a subinterval T' of T, the square matrix 'n-l(t) is

non-singular. An initial matrix may now be uniquely determined as

1 t
M(to) = Fn-1 (to) R_, (to) n- 1 (t 0 )

(3.34)

= r'n-i (to) 4)n-1 (to) ,

which may be used as an initial condition of the Riccati equation.

However, on T', (3.34) yields the unique algebraic expression for

M(t). Therefore
-1

M(t) = rn- ( t ) (nP (t)
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must coincide with the solution of the Riccati equation on T'. The

matrix c1n-1 is recognized as the Wronskian matrix of the basis

functions Oi(t) of the shaping filter. Since Dn- 1 is non-singular on

T', the shaping filter may be realized by a single n-th order differ-

ential equation defined on T', which has the operational expression

L(t,p) y = N(t,p) u ,

where L(t,p) represents an n-th order polynomial in p, the derivative

operator, with time-varying coefficients. The operator N(t,p)

generally represents a similar polynomial of order less than n. In the

present case, Lemma 3.2 implies that the impulse response of the

shaping filter, and its first n-2 derivatives are continuous at 7 = t.

Therefore, [3.10], the operator N(t,p) represents a polynomial of

degree zero; i.e., N(t,p) consists only of a time-variable gain.

The present example and the first-order case, considered in

Section 2.3, represent two general classes of autocorrelation

functions which admit factorization by algebraic means.

Example 3.5. Let

r(t,7) = r/2 - 7z/6t, for t > r

where t> 0, and r7> 0. Set

0 (t) =

and
(t) t/2
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The functions d? and df may be computed from (3.4) as

d (t) = 0 for t > 0

and

d2(t) = 1/t z for t> 0

Therefore, this example is recognized as a special case of those

considered in Example 3.4. The matrices F1 and 41 may be

determined as

t/2 1/2
T, (t) =

t t /6 t/3

and

1 0
(t) -1/t 1/tz

The matrix 4) (t) is non-singular for all t > 0 and

1

¢ (t) _-
t t

The unique expression for the covariance matrix M(t) is given by

M(t) = Fri(t) , (t) = /2
_tZ 2 t 3/3

The coefficient j3(t) may be determined either from (3.23), or directly

from the diagonal elements of M(t) as

3P (t) = + [:
t
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The following set of equations describe the shaping filter:

1

x(t) = + u(t)
t

y(t) = [ 1 -l/t] x(t) .

An initial value of the state-variable x(to) is chosen to be a random

variable uncorrelated with the input, such that

t to t/2
E[x(to) x (to)] = M(to) t t

t/2 t /3

Example 3.6. Let

r(t,T) = 3/2T+ 5Tz/6t, for t > 7

where t> 0, and T> 0. Set

0(t) = 1/ti

and

3t/2
y(t) = I I

The function do(t) may be computed as do(t) = 4. Choosing the

initial time to = 1, the matrix

1 1/2
M(1)=

1/2 1/3

satisfies the equation
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y(i). = M(1) 0(1)

is positive definite, and may therefore be used as an initial condition

for the following Riccati equation:

(t) 3/ - M(t) {{ J -M(t)

4 5t/ 3 -1/t 5t/3 -1/t2

One may verify by direct substitution that the matrix

t  t z / 2

M(t) = t3/3

satisfies the Riccati equation and the initial conditions.
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3.3 Reduction of the Riccatl Equation

In the previous section, a matrix Riccati equation of order n was

formulated, the solution of which is M(t), the state-variable covariance

matrix of the shaping filter. If one desires to compute the solution of

the Riccati equation by numerical or other means, then clearly, compu-

tational efficiency will be increased if the order of the differential

equation can be reduced. We will show in this section that if the integer

k is defined by conditions A4 and A5, then a matrix Riccati equation may

be formulated for a square submatrix Ms(t) of M(t), where Ms(t) has order

n-k-1, and the remaining elements of M(t) may be obtained from those of

Ms(t) by a set of linear relationships which requires the inversion of a

matrix of order k+ 1. The main result is stated in the following Theorem.

Theorem 3.5. Let r(t,7) satisfy conditions Al - A5. Then a matrix

Riccatiequation may be formulated for Ms(t), a square submatrix of

M(t) of order n-k-1, which is valid on a subinterval of T.

Proof. Since the matrix 4'k(t) has rank k+ 1 at points dense in T,

then there is a subinterval T', of T on which (4k(t) has rank k+ 1

everywhere. Since 4k(t) is continuous, there is a subinterval, T",

of T' on which a square submatrix 4)kl (t) has rank k+ 1 everywhere.

By re-ordering the rows of 4)k(t), a convenient partition of 4k(t) may

be established as
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k (t) = ki (t)]

L'k2 (t)

where 4ki(t) has rank k+ 1 everywhere on a subinterval of T. The

submatrix ckz has n-k-1 rows. The matrix Ik(t) may also be

partitioned into submatrices Fki and kz , having k+ 1 and n-k-1

rows respectively, and a similar partition holds for the vectors

¢(k+1) (k+ , and .

Theorem 3.3 established the validity of the equation

£k(t) = M(t) 'k(t) , (3.35)

to be satisfied by an admissible matrix M(t). Introducing conformable

submatrices M 1(t), Mz(t), and Ms(t), of M(t), yields for (3.25)

rki = M, ki + Mz 4kz

(3.36)
rkz = M 2

t ki + M s k z

Inverting the previous equations yields

S= ki - - M 2 k -1
Skkz ki (3.37)

Mt rk 4z k - Ms k z Dki

which indicates that once M s is determined, M, and M z may be found

in terms of M s .

In terms of the above submatrices, (3.23) may be rewritten as

S[(k+1) M, M2  0 1 (k+1)

2 (k+1) t (k+1)

dk. (3.38)
dk
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By performing the indicated matrix multiplication and substituting

t
the expression for M? derived in (3.37) into the above equation,

we obtain the following equation for 3a:

9z - dk , (3.39)

dk

where

Sz(k+) - rkz C (k+1)

and

(k+1) -1 (k+1)
f = z2 - @kz ki ¢1

Noting that Ms= 32 0t , (3.39) may be transformed into the following

matrix Riccati equation, similar in form to that in (3.21), but of

degree n-k-1 :

(g- Ms f)(g- Ms f)t
/Ms d (3.40)

which is the desired differential equation valid on the subinterval T"

of T.

The proof of Theorem 3. 5 depends upon the definition of the

interval T" on which a submatrix Dki is non-singular. It is possible to

extend the domain of definition of the matrix '1 ki by noting that time-

varying elementary row operations [ 3.10] may be performed on ck (t)

in such a way that the first k+ 1 rows of the row-permuted matrix are

linearly independent vectors for each t in T'. Denote by A(t) the (non-

singular) matrix of elementary row operations. Then by defining
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c-k = A k

rk = AEk

and

M= AMAt

the equation

r k = M ( k

is valid on T' and may be partitioned as before. If the derivation

used in' the proof of Theorem 3.5 is repeated, a Riccafi equation may be

derived for the submatrix M s which is valid everywhere on T' , the

interval on which Ok( t) has rank k+ 1.

In certain special cases, the matrix ki (t) will be defined and

non-singular on the entire interval of interest, T. A large and important

class of such special cases concerns shaping filters which may be repre-

sented as a single n-th order linear differential equation. It is well

known' [3.12], that the necessary and sufficient conditions that the

state-variable equations (2.5) admit an equivalent representation as a

single n-th order differential equation on the interval T is that the

Wronskian matrix of the vector 0( t), i.e., the matrix tn-i( t) , exists

and is non-singular on T. If such is the case, then the matrix Dk(t),

which consists of the first k+l columns of 'n-i_(t), must have rank k+ 1

everywhere on T. Therefore, the interval T' coincides with T, and the

above proof and discussion may be applied in order to show that (3.40) is

valid everywhere on T.
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Omitted from Theorem 3.5 is the fact that an admissible; solution

Ms(t) of (3.40), together with the transformations in (3.37), determine

an admissible matrix M(t), which is a solution of (3.21). The proof of

this statement is elementary, requiring differentiation of the partitioned

matrix M(t) and substituting equations (3.37) and (3.40). The algebraic

details are tedious and are therefore omitted. Note that the question of

the existence of an initial condition matrix for (3.40) is of no concern,

since Ms(to) may be chosen as the appropriate submatrix of M(to) which,

from Theorem 3.4, is known to exist.

As an example of the reduction technique, Example 3.6 shall be

reconsidered.

Example 3.6 (continued). Let

r(t,r) = 3/27 + 5 2/6t, for t > 7

The function dz(t) has been computed as d2(t) = 4; therefore k = 0.

The required submatrices, defined in this section, become

4ki = 1 ,

)kz = 1/t

1ki = 3t/2

'kz = 5t 2/6

Y? (k+1) = 5t/3

and

01(k+i) = 0

The functions f(t) and g(t) become:
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f(t) = -1/t 2

and

g(t) = 5t/3 .

The reduced matrix Riccati equation (3.40) becomes

Ms = (-1/t'+ Ms 5t/3)'/4 ,

where Ms(t) is a scalar. To be consistent with the previous con-

sideration of this example, let to = 1 and Ms(to) = 1/3. One may

verify by direct substitution that the function,

Ms(t) = t3/3 ,

satisfies the Riccati equation and the initial condition. Substitution

of the solution Ms(t) = t3/3 into (3.37) yields the following for the

submatrices M, and M 2:

Mi(t) = t

and

Mz(t) = t /2

which is identical with the solution obtained in the previous section.

In addition to the reduction of order demonstrated above, it may

be shown that the matrix Ms(t) is related to the solution of a set of

2(n-k-1) linear differential equations which are associated with the

Riccati equation. Let Za(t) and zb(t) denote vectors of dimension n-k-1

which are a solution of the following linear equation:
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a 1 [ ft gt
S [f g ] z a (3.41)

Let Z(t) represent a fundamental matrix solution of (3.41), such that

Z(to) = I, and partition Z into square submatrices of order n-k-l, so that

Z, Z]

Z3 Z4

It is well known [3.13] that Ms(t) may be determined from the sub-

matrices of Z(t) and from an initial matrix Ms(to) in the following way:

Ms(t) = [Zl(t) Ms(to)+ Zz(t)] [Z 3(t) Ms(to)+ Z4(t)]-1  (3.42)

If one does not desire to reduce the order of the Riccatilequation, then

the vectors f and g may be replaced by 0 (k+) and y(k+') respectively

in (3.41) yielding a set of linear differential equations of order 2n.

Equation (3.42) remains valid upon replacing Ms(t) and Ms(to) by M(t)

and M(to) respectively.

It has been shown by Levin, [3.13], that Ms(t) as obtained from

(3.42) is uniquely determined by specifying Ms(to), and Ms(t) is identical

to the solution of the Riccati equation (3.40). Note that the matrix in-

version indicated in (3.42) exists for t= to, and by continuity, in a

neighborhood of to, which reflects the fact that the existence theorem for

ordinary differential equations [3.9] guarantees only a local solution.

It is interesting at this point to compare the results of this

section with the results obtained by Darlington [3.141. Darlington
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considered shaping filters which are realizable by a single n-th order

linear differential equation, and showed for certain cases that the

solution of the factorization problem corresponds to the solution of a

single linear differential equation of order 2(n-k-1). For Darlington,

the integer k is interpreted to mean i- h(t, ') is continuous at
a t

= t for 0 i 5k and k h(t,r) has a simple discontinuity at 7=t,
t k

where h(t,7) is the impulse response of the shaping filter. The results

of Section 3.1 imply that k, as (implicitly) defined by Darlington, is

identical with k as defined by conditions A4 and A5 in the present work.

It was shown above by utilizing a linear constraint imposed on

the covariance matrix M(t), that the coefficients of a shaping filter

represented by (2.5) can be determined via the solution of a set of

linear equations of order 2(n-k-1), thereby illustrating a point of

coincidence of the present work and the work of Darlington.

Although the results of this section were introduced by an appeal

for computational efficiency, it is clear that, depending on the value of

k, whatever efficiency is gained by reducing the order of the Riccati

equation may be lost by requiring inversion of a matrix function of

order k+ 1. The same comments apply if one were to compute solutions

to equations (3.41) and (3.42). In this case, the differential equation

has order 2(n-k-1), and the matrix function to be inverted has order n-k-1.

Clearly, if any computational scheme is to be effective, one

must be assured that the desired solution will exist in more than an
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unspecified neighborhood of to. The next chapter will be concerned

with the determination of global solutions of the factorization

problem.
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CHAPTER IV

REALIZATION OF THE SHAPING FILTER:

GLOBAL EXISTENCE

4.0 Introduction

The results of Chapter III are limited in the sense that a solution

of a Riccati equation is guaranteed to exist only in a local neighborhood

of the initial time. In this Chapter, sufficient conditions will be formu-

lated which allow the Riccati equation, and hence, the factorization

problem, to have a global solution.

An interesting and important result presented here is the formu-

lation of a set of criteria, not including A3 the non-negative definite

condition, which are necessary and sufficient to describe the class of

autocorrelation functions under consideration.

If the factorization problem has a global solution, then stability

of the shaping filter is an important consideration. Stability will be

defined in an appropriate way and a sufficient condition for the stability

of the shaping filter will be established.
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4. 1. Global Solution of the Factorization Problem

The standard existence theorem for ordinary differential equations

[4. 11 implies that a solution of a non-linear differential equation exists

only in a local neighborhood of the initial time. It is well-known that a

solution of a non-linear differential equation may exhibit the phenomenon

of finite escape time; i.e., the solution may become unbounded at a finite

time after the initial time. Finite escape is relevant to the factorization

problem because the Riccati equation is non-linear.

The following example considers an apparently well-behaved auto-

correlation function for which the corresponding covariance matrix, M(t),

exhibits the finite escape time phenomenon.

Example 4.1. Let

\-max(t,T) , for t and 7 < 0 ,
r(t,To) =

0 , for t or 7 > 0

The functions 0 and y may be determined as

t , for t < 0
0(t) = ,fort

0 , for t : 0

and

y(t) = 1 , for all t

Although the results of Chapter III may be used to formulate a Riccati

equation for M(t), the present example corresponds to the first-order

case, which was considered in Section 2.3, and M(t) may be obtained

algebraically as
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M(t) = -1/t , for t< 0

Clearly, M(t) escapes at t = 0. The coefficient of the shaping filter

may be determined as

3(t) = [ M(t)] 2 = l/t

which also escapes at t = 0.

Clearly, such unbounded behavior of M(t) is undesirable,

especially if simulation is contemplated. The present objective is to

establish conditions which suffice to prevent finite escape of M(t). Such a

condition is readily available in the first-order case, as was shown in

Section 2.3. Indeed, if the function 0(t) is such that 0(t) never vanishes

indefinitely, then the results of Section 2.3 indicate that M(t) may be

defined for all t, where to t < c , and 0(to) t 0.

In order to effect a generalization to the multi-dimensional case,

it is both convenient and natural to utilize the concept of complete observ-

ability. Kalman [4.2] has shown that the shaping filter, represented by

equation (2.5), is completely observable if and only if for any tl, there is

a finite tz > tl such that the functions Oi(t), for i = 1,2, ... n, are

linearly independent on the interval [t 1, tz]. Therefore, one may determine

directly from the given data whether the shaping filter will be completely

observable. In the first-order case, complete observability reduces to the

non-vanishing property of 0(t), discussed above.
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The following Theorem t shows that complete observability is

sufficient to insure that the desired covariance matrix M(t) is finite pro-

vided that Mo is sufficiently small.

Theorem 4.1. Let T = [to, m) , and let r(t,7) satisfy conditions Al

and A2, let r(t,t) and 0(t) be finite for to < t < c, and let r(t,7) admit

factorization so that

r(t,7) = t (t) M [min (t,r)]0(7) ,

where M(t) is admissible. Then M(t) is finite for all t in T provided that

values of M(to) are suitably restricted and. that the shaping filter is

completely observable.

Proof. Let x(t) be a vector-valued random process for which

M(t) = M [x(t) x t (t) ] ,

and define a scalar-valued process v(X) as

v(X) = 0t () x(t)

for fixed t and all X ! t. Then, from Theorem 2.1, the function

E [v(X) v(g)] = Pt() M(t) 0() (4.1)

is an autocorrelation function. By hypothesis, M(t) is non-decreasing

so that

E [vZ()] = 0t(X) M(t) 0() < r(X,X) (4.2)

for X > t. The Schwarz inequality states that

Theorem 4.1 was originally stated without proof in [4.3].
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(E [v(X) v(E) ])z 9 E [v2 (X)] E[ vZ()1

which may be applied to (4.1) and (4.2) to yield

1
[¢t(ot)(t ({[ [r(X,,) r(M, )]2 < , (4.3)

for all X t, and g t.

Pre-multiplying and post-multiplying equation (4.3) by 0(X) and

t0 () respectively, yields

t t
tr 0(X)¢t(X) M( t ) 0( ) Ot ( )  : Itr¢(x) [r(,X)r( ,()]2 t()l , (4.4)

where "tr" abbreviates trace.

Equation (4.4) may be integrated with respect to both variables X

and , between the limits t and t'. On the left side of equation (4.4),

the double integral may be moved within the magnitude sign and then

commuted with the trace operation without invalidating the inequality.

Define the non-negative definite Gramian matrix of the functions

¢i(t) as

G(t,t') =  t'(X) 0 (X)dX (4.5)
t

It is well-known [4.4] that singularity of the Gramian matrix is

necessary and sufficient to determine the linear dependence of the

functions 01(t) on the interval [t,t' ]. However, by assumption, a

finite t' > t may always be found so that G(t,t') is non-singular.

Let the scalar p(t,t') denote the result of integrating the right-

hand side of equation (4.4), i.e.,



89

p(tt') = I t() [r(X,) r(d,)] 0() IdXdg (4.6)
t t

Since the integrand of equation (4.6) is finite, equations (4.4),

(4.5) and (4.6) yield

Itr G(t,t') M(t) G(t,t') <p(t,t') < = (4.7)

Since the left side of equation (4.7) is bounded, the magnitude sign

may be omitted. One may then show, using elementary properties of

non-negative definite symmetric matrices, that

tr M(t) 5 p(t,t') tr z G-' (t,t') <

which must hold for all t' for which G- 1 is non-singular. Therefore,

tr M(t) ! inf p(t,t') tr2 G-'(t,t') < C (4.8)
t'

In particular, tr M(to) cannot violate the inequality (4. 8), for then

M(t) must have a finite escape time, thus violating (4.8).

Theorem 4. 1 states that the covariance M(t) is finite provided that

M(to) is sufficiently small. Clearly, (4.8) provides a necessary but not

sufficient upper bound on tr M(to). The following Example explores the

finite escape phenomenon for a stationary random process.

Example 4.2. Let

4 t-,lr 5 2 1t-71
r(t, T) = e e- - 5e t3 12

and let

(t) et eand (t) =

7(t) -5= j and 0(t) =

L12 _
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Application of the reduction technique of Section 3.3 yields the follow-

ing Riccati equation for the scalar covariance Ms(t):

1Ms(t) = (at - Ms(t) e-2t) 2  (4.9)

From (3.22) and Corollary 3.4, the minimum value of Ms(O) is

Ms(0) = 75/396. The general solution of (4.9) ,

25 4t 1 /Ms (0) - 25/4 el t

Ms(t) 4 4 Ms(0) - 1/4 , (4.10)
1 - (M (0) - 25/4 et

Ms (0) - 1/4 /

is illustrated in Figure 4-1 for several values of Ms(O).
If Ms(O) > 25/4, then the denominator of (4.10) will vanish at a finite

time t > 0, so that Ms(t) will have a finite escape time. If

75/396 g Ms(O) < 25/4, then Ms(t) will be well-behaved. However,

the upper bound given by (4.8) is tr M(O) : 3484, But corresponding to

M s (O) i 25/4, we have from (3.37) that tr M(O) . 57/4, illustrating

that (4.8) is necessary but not sufficient to insure a finite M(t).

Two solutions of (4.9) are of special interest. Corresponding to

M,(O) = 25/4 is the solution

Ms 1 (t) = 25/4 e4t

and corresponding to Ms(O) = 1/4 is the solution

Ms,(t) = 1/4 e4t

Evidently from (4.10)

lim Ms(t) = 1/4 e4t
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fn Ms(t)
REGION OF SOLUTIONS
HAVING FINITE
ESCAPE TIME

25 4tMs, (t)= e REGION OF SOLUTIONS
ASYMPTOTICALLY
STABLE IN THE SENSE

4 OF LIAPUNOV

44

0 t

FIG. 4-1 ILLUSTRATING BEHAVIOR OF SOLUTIONS Ms(t)OF EQUATION
(4.9) FOR VARIOUS INITIAL VALUES Ms(O). SOLUTIONS M6s(t)
AND Msg(t) CORRESPOND TO TIME-INVARIANT SHAPING FILTERS
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for all Ms(O) < 25/4. Therefore the solution Ms 1 (t) corresponding to

M s (O) = 25/4 is unstable in the sense of Liapunov and represents a

separatrix, and the solution Msz(t) corresponding to Ms(O) = 1/4 is

asymptotically stable. The transfer function of the shaping filter cor-

responding to Ms5 (t) is

s-3
HI(s) = (s+1)(s+2)

and the transfer function of the shaping filter corresponding to Msz(t)

is

s+3
Hz(s) = (s+ 1)(s+2)

The transfer functions H, and Hz represent the two realizable solutions

of the factorization problem which are produced by the Bode-Shannon

technique [4.5]. But since Ms,(t) is unstable, then Hi(s) cannot be

realized using the present factorization technique. Note further that

H, 1(s) is unrealizable and that H-t(s) is realizable (with the exception

of a required differentiation.) Therefore the solutions of (4.9) for

Ms(O) < 25/4 determine shaping filters which are asymptotically time-

invariant and which converge to a shaping filter having the transfer

function Hz(s). The whitening filter corresponding to Hz(s) is stable.

The above example established a relation, between the finite

escape time phenomenon and some asymptotic properties of the shaping

filter. This example suggests that a similar relation may hold for

stationary processes in general, and possibly for some non-stationary
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processes. Future research will examine this question.

Theorem 4. 1 is difficult to apply because (4.8) is only a necessary

upper bound for tr M(t). A sufficient bound for tr M(t) related to the

solution of a scalar differential equation, is presented below.

Theorem 4.2. Let r(t,7) satisfy Al - A5 and let V(t) satisfy the

differential equation

S (IIk+ ll v + 2 V + (lWk+ )1 llz  (4.11)

= d dk d '

where ' 1 represents the Euclidean norm. Let Vmax(to) be the largest

value of V(to) such that the solution of (4.11) corresponding to:V(to) has

no finite escape time for t to . Then any solution M(t) of (3.21) is

finite for all t t to if tr M(to) < Vmax (to).

Proof. Using elementary properties of non-negative matrices, we may

transform the. Riccati equation (3.21) into the:following

inequality:

d 0(k+1)+ tr2 2 1 (k+1)t (k+1) tr+M+- (4 12)
d- tr M ! d5 M + d Li M + d .(4.12)
dt dk d dk

Let V(t) be the solution of (4.11) corresponding to the initial condition

Vmax(to) and let trM(t o) < Vmax(to). Subtracting (4.12) from (4.11)

yields

d II k+')l l
-T (V- trM) d (V - trM)

2tr M+ k+ k+ (V-trM) .
dk
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dNote that -(V- tr M) is non-negative if and only if V- tr M is non-

negative, so that V - tr M cannot change sign. Hence, if

Vmax(to) - tr M(to) > 0, then V(t) - tr M(t) > 0 for all t > t o.

Theorem 4.2 requires the solution of the Riccati equation (4. 11) in

order to provide an upper bound for tr M(to). However, if the coefficients

of (4.11) are bounded by exponential functions, as is the case for some

stationary random processes, then an explicit upper bound may be obtained.

Le z (tX)J 2 at I 0 (k+l)(t) 112 z -at
Let d (t) A

1
Z e d(t) - A Z e , and

II0(k+l1(t) (k+)(t) I

dk (t) < A A , for some A1 , Az and a > 0. Then (4.12)

becomes

d at/z -at/)dtrM(t) 5 ( A t/ + A2 et/ tr M(t) )? (4. 13)
dt

Equation (4.13) may be integrated in closed form, with the result that if

tr M(O) a- 2AiA 7z( a - 4 A a (4.14)S 4A (4.14)

where

a > 4 A, Az

then M(t) will be finite for all t z 0. But, from Corollary 3.4,

tr M(0) tr rk(0) (rk(0) . (4.15)

Therefore, if (4.14) is to provide a meaningful upper bound, (4.14) and

(4.15) must be consistent. Henceforth, we will assume for simplicity

that solutions M(t) of (3.21) are finite for all t > to .
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In order to realize the shaping filter, one needs assurance, not

only that M(t) is finite, but that the coefficient 3(t) is finite. As the

following first-order example shows, M(t) may be finite but 3(t) may

become infinite at a finite time.

Example 4.3. Let r(t,7) = 0(t)Y(7) for t > 7', where

0(t) = it 2 , and
1

2 , tot2 2 Itl, for to ! t !5
y(t) =

2 tot] +2 1t I, for to 90!g t

and for to negative. Using the technique of Section 2.3, we' may

calculate M(t) as

t) 2 Ito I2-2 It , for to st 0
M(t) - 1 1

0(t) 2 Itl 2 + 2 It 1 , for to 0 <t

Clearly, M(t) is non-negative, non-decreasing, and finite for t to .

Differentiating the above expression yields

M (t) = Itl - 2 , for t Z to

and

0(t) = [M(t) 2 = Itl' 4

which is unbounded for t = 0.

From Lemma 3.2,

do(t) = 0(t) P(t) = ItJ

which is zero for t = 0.
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The following Theorem presents conditions which are sufficient to

guarantee that the function P(t) is finite.

Theorem 4.3. Let r(t,7) satisfy conditions Al -A5, and let M(t) be

defined for all t to . Then 0(t) is finite for all t > to .

Proof. From Theorem 3.3, the covariance; matrix M(t) may be

obtained as a solution to the matrix Riccati equation (3.21), and by

assumption, M(t) is finite. The coefficient 0(t) is determined from

equation (3.23) as

S= (k+(t) - M(t) 0 (k+l)(t)

dk(t)

The functions y (k+1 (t) and 0(k+i)(t) are finite on T since, by condition

A4, they are continuous on T. The function dk(t) does not vanish on

T, -by condition A5. Therefore 3(t) is finite on T.

The condition that dk(t) be non-vanishing on T is only a sufficient

condition as may be verified by reconsidering Example 2.1.

Example 2. 1, (continued)

r(t,7,) = 7cos 7 cos t

Letting

¢(t) = cost ,

and

Y(t) = t cos t

it was previously established that
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M(t) = t

and

(t) = 1,

which are finite. However,

do(t) = 0(t) (t) = cos t

which vanishes at t = (2n-1) I/2, for n = 1,2, ....

We have introduced sufficient conditions in Theorems 4.1- 4.3 which

guarantee that the covariance matrix M(t), and the coefficient (t) must

be finite. Therefore, a solution of the Riccati equation, and of the

reduced Riccati equation discussed in Section 3.3, may be defined

globally, and the factorization problem has a global solution.

Although emphasis in Chapter III has been given to questions of

existence and realizability, the results of this section allow the

possibility of practical computation of the solution of the Riccati equation.

Digital computer programs designed for numerical integration of a matrix

Riccati equation are in existence, [4.6], [4.7]. Therefore, one may

consider the preceding results not only as an existence theory, but as a

constructive factorization technique which will yield numerical values of

the coefficients of the shaping filter.
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4.2. Characterization of Autocorrelation Functions

With the assumption that M(t) is finite added to the list of basic

conditions Al -A5, it is possible to characterize the class of auto-

correlation under consideration in a simple fashion which obviates

explicit reference to condition A3, the non-negative definite condition.

Such a characterization is desirable because, with the exception

of A3, conditions Al - A5 provide simple criteria which must be satisfied

by the given functions 0(t) and y(t); tests for these criteria may be

devised which require only a finite number of calculations. On the other

hand, the definition of the non-negative definite property, given in A3,

requires calculation of an infinite number of determinants of all orders.

Clearly, a test based directly on the definition of the non-negative

definite property will never terminate.

If the given autocorrelation function corresponds to a stationary

random process, i.e., if r(t,7) is a function of the difference It- 7I,

then the non-negative definite property has a simple physical inter-

pretation. Bochner' s theorem [4.8] states that a continuous, symmetric

function r(t - 7) is an autocorrelation function if, and only if r(t - 7) is

the Fourier transform of an everywhere non-negative function. In other

words, r(t - 7) must correspond to a physically meaningful, i.e., non-

negative, power spectrum. Clearly, the methods of Fourier analysis and

the use of appropriate approximation techniques may provide a finite test

to be applied to functions r(t-7).
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In the non-stationary case, Fourier or frequency-domain analysis

is generally inapplicable. However, there is a result based on spectral

decomposition, which bears some resemblance to Bochner' s theorem.

Consider the following integral equation:

IT r(t,7) ) ei () d = Xi ei (t) (4.16)

Solutions ei(t) are the eigenfunctions of the kernel r(t,T), and the scalars

Xi are the eigenvalues. It is well-known, [4.91, that the kernel r(t,7) is

non-negative definite if, and only if all the eigenvalues Xi are non-

negative. But, there are, in general, an infinite number of functions 8i(t)

and scalars Xi satisfying (4.16). In addition, solutions ei(t) are

generally unavailable in closed form. Therefore, a test based on solving

(4.16) will not terminate. Furthermore, such a test has an additional

shortcoming. Suppose that r(t,7) is given as the result of a process of

approximation and interpolation performed on a set of data points. Then it

is possible that r(t,T) may satisfy A3 on T' x T', where T' is a subinterval

of T, but may not satisfy A3 on T xT. In such a case, some of the eigen-

values Xi will be negative, indicating that r(t,T) does not satisfy A3 on

Tx T. Inarder to determine the sub-square T' x T' on which r(t,T) is non-

negative definite, it is necessary to investigate (4.16) on every sub-

interval of T, which process does not terminate.

In the present case, the class of functions r(t,7) is not completely

general. Physically reasonable limitations have been imposed on r(t,7) to
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the effect that r(t,7) is separable, and differentiable a finite number of

times. As will be shown below, these restrictions on the class of

functions r(t,7) allow the formulation of easily applied criteria, which

are necessary and sufficient to determine whether a particular function

r(t,7) is non-negative definite.

Theorem 4.4. Let T = (t o ,tl), and let r(t,7) satisfy conditions Al,

A2, A4, and A5. If r(t,,7) satisfies A3 on Tx T, then

(a) dz > 0 , for all t in T ,

and (b) Rk(t) > 0, for t dense in a neighborhood of to.

Proof. The proof of the Theorem follows directly from Corollary 3. 3

and Lemma 3.4.

Sufficiency is established in the following Theorem.

Theorem 4.5. Let T = (t o ,tl) and let r(t,7) satisfy conditions A1,

A2, A4, and A5. If

(a) d2 (t) > 0, for all t in T,

and (b) Rk(t) > 0, for t dense in a neighborhood of t ,

then r(t,7r) satisfies A3 for t and 7 in a neighborhood of to . If, in

addition to (a) and (b) above, some solution M(t) of (3.21) is finite for

t in T, then r(t,7) satisfies A3 on T xT.

Proof. The hypotheses Al, A2, A4, and A5 insure that the matrix



101

Riccati equation (3.21) may be formulated for a matrix M(t), and (3.21) is

valid on T. If d (t) > 0, then (3.21) implies that M(t) 2 0.

Hypothesis (b) and Theorem 3.4 implies that a symmetric initial

matrix M o may be determined at a point t', arbitrarily close to to ,

such that

Mo, 0 ,

and

rk(t') = Mo k (t')

Therefore

M(t) = M + M (X) dX
t'

is an admissible matrix. Theorem 3.3 implies

rk(t) = M(t) 4 k(t)

for all t in a neighborhood of t', and in particular,

Y(t) = M(t) 0(t) . (4.17)

Therefore, from Al and A2,

r(t,7) = 0 t(t) M[min(t,")] 0() ,

for t and r in a neighborhood of t', and from Theorem 2.1, r(t,7)

satisfies A3 for t and 7 in a neighborhood of t' . But t' may be chosen

arbitrarily close to to. Hence r(t,,7) satisfies A3 for t and 7 in a

neighborhood of to.

If M(t) is finite on T, then (4.17) is valid everywhere on T. Hence,

r(t,r) satisfies A3 on T xT.
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The results presented above completely characterize the non-

negative definite property of the class of functions which satisfy con-

ditions Al - A5. Note that condition (a) requires only the determination of

the sign of a scalar-valued function on an interval. Condition (b) requires

that a matrix of order k+ 1 be positive definite in an arbitrarily small

neighborhood of a point. An equivalent condition, [4. 10], requires that

k+ 1 determinants, of orders 1 to k+ 1, be computed , and their signs

determined in a small neighborhood of the point t o .

The present results and Bochner's theorem are similar in the sense

that both require the determination of a quantity which in the stationary

case is regarded as the power spectrum of the process, and in the non-

stationary case, is regarded as the instantaneous power of the white-

noise component of the k-th derivative of the process. This similarity,

although interesting, is limited as shown in Example 4.5.

The following examples will conclude this section.

Example 4.4. The First-Order Case

Let

0(t) Y(7), for t 7
r(t,or) =

(7r) (t) , for t < r7

where 0 and y are continuously differentiable on T = (t o , tj), and 0

never vanishes indefinitely on T. Assume r(to,to) > 0, and

do(t) > 0 on T. Then,
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Defining M = 7/0 implies

dz = 02 M > 0

Therefore,

M(t) > 0 , for t in T

With M(t) defined above, we have

Y(to) 7 (to)
M o = M(to) -(to) o 0 .

0 (to) r(to , to)

Therefore,

M(t) = Mo  t M(X) dX 0
to

and M is non-decreasing on T, so that r(t,7) is an autocorrelation

function. This analysis confirms the discussion of Section 2.3.

Example 4.5. Let

r(t,7r) = - 2 e- t-+ 3 e-2 1t-7

and let

-2 e e-t
(t) -23 et , and 0(t) e- t

Then d2 (t) = 8, and r(t,t) = 1. Hence, from Theorem 4.5, r(t,T) is

non-negative definite in some region. r(t,7) has the appearance of

a stationary autocorrelation function. The Fourier transform of r(t,T)

may be determined as
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16 w0- 4
(w2+ 1) (W+ 4)

which has both positive and negative values. Therefore from Bochner's

Theorem, r(t,7) is not non-negative definite, which is an apparent

contradiction. Application of the reduction technique in Section 3.3

yields the following Riccati equation for the scalar covariance Ms(t)

s(t) = ( 3 et + Ms(t) e-t ) ,

which has the general solution

[Ms(to) + 13- 1 e60 2 16(t-0(t - 13+ e4t

Ms(t) = M(to) + 13+ 160 . (4.18)

Ms(t,) + 13 - 1 6 0  2 Vi7(t -t o)1 - e
Ms(to)+13+ J-0

Ms(t) is finite for all t t to provided that Ms(to) < VO- 13 < co . But,

from (3.22) and Corollary 3.4, Ms(to) >9. Hence, any solution of the

Riccati equation which is relevant to the factorization problem must

have a finite escape time. Therefore r(t,7) is non-negative definite

in only a finite region which may be determined from (4.18). This

conclusion is not inconsistent with Bochner' s theorem, since Bochner' s

theorem applies to r(t,T) defined for all t and 7 .
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4.3 Stability of the Shaping Filter

In this section, a condition for the stability of a shaping filter

represented by (2.5) will be developed. Stability is to be defined in the

following way.

Definition 4.1. A linear system is LzI.B.O. stable if every square-

integrable input produces a bounded output.

The following Lemma provides a sufficient condition for L? I.B. O.

stability.

Lemma 4.1. A linear system is L? I.B. O. stable if

thz(t,7)d rC !- <
to

for all t > to, where h(t,7r) is the impulse response of the linear

system.

Proof. From the Schwarz inequality,

y 2(t) = [ Sth(t,7) u(7) d 7] f h(t, 7)d t tj uZ(7)d < u 2C ud (7)d7 .
to to to to

Therefore, according to the hypothesis of the Lemma, every input u(t)

which is square-integrable on the interval [t o ,co) will produce an

output y(t) which is uniformly bounded on [t o ,,o).

Although the stability criterion defined above may seem arbitrary

and unfamiliar, this criterion was chosen for two reasons. First, the
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criterion is extrinsic; that is, L2 I. B.O. stability is characterized by the

external (input-output) behavior of a system rather than by the internal

behavior of a state-variable model of the system. It was mentioned in

Section 2.1 that equivalent state-variable models of a linear system

preserve the external behavior (impulse response) of the system, but do

not preserve such internal properties as stability of the state-variable.

In particular, the shaping filter model in (2.5) may have a well-behaved

input-output description, but will rarely be well-behaved internally; i.e.,

the state variable x(t) and the coefficients 3(t) and O(t) will generally be

unbounded. Clearly, an extrinsic stability criterion is desirable.

The second reason for choosing the stability criterion in

Definition 2.1 is that the L I.B.O. stability property may be directly

related to appropriate properties of the autocorrelation function r(t,7), as

the following Theorem indicates.

Theorem 4.6. Let T represent the interval [t o ,=), and let r(t,7)

satisfy conditions Al - A5 on T and let M(t) be finite for all t t to.

Then any shaping filter corresponding to a finite M(t) is Lz I.B.O. stable

if r(t,t) g C < w for all t.

Proof. Since r(t, 7) satisfies Al - A5, there is an admissible. matrix

M(t) satisfying

r(t,7) = Ot(t) M[min(t,r)]0(7) ,

for all t and T in T, and by assumption, M(t) is finite. Therefore from
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(2.10) and (2.15),

S> C > r(t,t) = 0t(t) M(t) 0(t) 0t(t) [M(t) - M(to)] 0(t)

= S h(t,) dr ,
to

for all t in T, where the last equality is valid regardless of the

choice of initial covariance M(to) provided that M(to) produces a

finite M(t). Hence, from Lemma 4.1, any shaping filter correspond-

ing to r(t,T) is L2 I.B.O. stable.

For time-invariant or periodically varying systems, L2 I.B.O.

stability is equivalent to the more familiar concept of bounded input

bounded output (B.I.B.O.) stability. It is well-known [4.11 1 that a

time-invariant (periodic) system is B.I.B.O. stable if and only if all

poles (characteristic exponents) of the system have negative real parts.

The impulse response of a time-invariant or periodically-varying

system may be written as

n
h(t,T) = ai(t) bi(t-T) c1 (7) ePi(t-)

i=1

For a periodically-varying system, the functions ai(t) and ci(t)

for i = 1 . .. n, are periodic with a common period, the functions bi(t -T)

are polynomials in (t -T), and the complex constants pi are the char-

acteristic exponents appearing in conjugate pairs. For a fixed system,

the functions ai(t) and ci(t) are unity, the functions bi(t - T) are
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polynomials, and the pi's are poles.

Then,
2n

h(t,)= = ai(t) bi(t-7) ci(7) ep(t-T)

i=1

where ai(t) and bi(t) are periodic or unity, bi.(t-7) is a polynomial, and

the constants Ti are appropriate sums and differences of the constants

Pi. Clearly Re (pi) < 0 if and only if Re (pi) < 0, for all i. The function

h (t,7) may itself be regarded as an impulse response of a time-invariant

or periodically varying system which, as is well-known [4.11], is

B.I.B.O. stable if and only if

t h2 (t, r) d" C < co ,
to

for all t. Therefore, the equivalence of B.I,B.O. and L2 I.B.O. stability

for time-invariant and periodically-varying systems is established.

It is possible, using some recent results of Silverman and

Anderson [4.12] concerning stability of linear systems,to develop

general criteria for B.I.B.O. stability of the shaping filter. However,

such criteria have the disadvantage of requiring detailed knowledge of

the behavior of the covariance matrix M(t) and the coefficient 0(t), which

thus far, have not been simply related to properties of the given auto-

correlation function r(t,7). It was shown in Theorem 4.6 that LzI.B.O.

stability may be readily established by inspection of r(t,t). Therefore,

the introduction of this unfamiliar definition of stability is appropriate

and justified in the present context.
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CHAPTER V

REALIZATION OF THE SHAPING FILTER:

SINGULAR CASES

5. 0 Introduction

It was convenient in the previous sections to require the index

functions d (t) to be strictly positive on the interval T. In this

chapter, the class of autocorrelation functions under consideration is

extended by considering cases for which d(t) = 0 at an isolated point

t' in T, and for which d? (t) = 0 for all t in T, and for 0 !i : n-1. In

the former case, sufficient conditions are established which guarantee

that theRiccati equation has a solution which is continuous at the

singular point. In the latter case, a Riccati equation cannot be formu-

lated, but an algebraic solution of the factorization problem is

developed.
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5.1 Riccati Equation With an Isolated Singular Point

Cases for which d? = 0 at a point are of more than academic

interest, since they may frequently be encountered in practice. For

example, if the behavior of a periodically fading radio channel is to be

simulated, then one might require the coefficient 0(t) to vanish periodi-

cally. It is possible, then, that dZ (t) may vanish periodically, and

hence, the Riccati equation will have periodically spaced, isolated

singular points.

The purpose of this section is to examine the solutions of the

Riccati equation (3.21) in a neighborhood of a singular point, and to

demonstrate that. under certain conditions, there exists a solution M(t)

of the Riccati equation which may be extended continuously past the

singular point. We assume for simplicity of analysis that the Riccati

equation has a single isolated singular point at t = t', and that

assumptions Al - A5 hold in the open intervals Ti and T?, where Ti=(a,t')

and T = (t' ,b) and a < t' < b. Then d (t) > 0 for all t in Ti and Tz, and

dk(t') = 0. We will restrict attention to those solutions M(t) of (3.21)

which are finite.

In order to establish the desired results, the intervals Ti and T2

must be considered separately. The following Lemmas establish pre-

liminary results which are applicable on T1 .

Lemma 5.1. Let r(t,7) satisfy conditions A1-A5 on TI and Tz and

let d2(t') = 0. Let Mo= M(to), satisfying (3.22), be an initial
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condition for the Riccati equation for to in T1 , and let M(t) be every-

where finite. Then the solution M(t) is continuous on [t o ,t'), and

the left-hand limit

lim M(t) = M-
t -t'

exists. Therefore M(t) is uniformly continuous on [to ,t'7.

Proof. By assumption, M(t) is finite. Furthermore, M(t) is

admissable in [to ,t') , and hence, is monotone. Therefore

lim M(t) = M'
t -t'

exists and is finite. By including the value M-, M(t) may be defined

on the closed interval [to ,t'] and is continuous, and hence, uni-

formly continuous on that interval.

By slight abuse of the definition of the term solution, M(t) will

be called a solution of the Riccati equation for all t in [to ,t'].

In order to show that M(t) may be extended continuously past the

singular point t', we will show that the totality of solutions of the

Riccati equation are equicontinuous on [t o ,t' j . Equicontinuity is defined

as follows:

Definition 5.1. Let X assume values in a parameter set A, and

let !1 " denote an appropriate matrix norm. A set of (matrix-valued)

functions (MX(t)) is equicontinuous at a point 7 if, for every c> 0,
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there exists a 8 > 0 such that

IMX (7) - M (t)II < ,

for t such that - tI < 6 and for all X in A.

The set (M (t) represents the totality of finite solutions of

the Riccati equation corresponding to the set of initial conditions

[M(to)} which contains covariance matrices satisfying

ik (to) = M (to ) k(  ) .

It will be ncessary for later development to restrict attention to those

matrices MX(to) which are non-singular.

Certainly, the set (Mx(t)} is equicontinuous on [t o ,t'), since

for each X MX(t) is continuous on [to,t'), and from Theorem 4.3,

M (t) is bounded on [to,t' -c] for any c > 0, and the bound on MX(t)

is independent of X .

Since the set [MX(t)} is equicontinuous, the Ascoli lemma [5.1]

implies that ( MX(t) has a uniformly convergent subsequence MXi (t),

i = 1,2, .... We will digress for a moment and show that if M(t) is

the uniform limit of a sequence of solutions M>i (t), then M(t) is also a

solution of the Riccati equation (3.21). This result will be useful later

in this section. Denote the right-hand side of the Riccati equation by

F[M (t), t]. Then (3.21) becomes

M Xi(t) = F [Mi(t), t]
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which may be integrated to yield

t
MXi (t) = MXi(to) + F [MXi( ), 7d7 . (5.1)

If

lim Mi(t) = M(t)

uniformly on [t ,t'), then (5.1) becomes

t
M(t) = M(to) +lim f F[Mi(7), "]dr7 (5.2)

i- to

Set MXi = M + AXi , where Aki vanishes uniformly in t in the limit.

Then, expansion of the function F[MXi(t), t] yields

F[MXi(t), t] = F[ M(t) + A i(t), t]

= F[M(t), tj+ G[Axi(t), t] ,

where the function G[Ai(t), tj is bounded and contains only linear and

quadratic terms in AXi. Therefore the norm of G satisfies

j G[AXi(t), t]ji Ai (t) jj C

where C is a finite constant, for IJAXi(t) 1 sufficiently small. But

t t
lim IIJ G[A i(7), r]dj G lim J G[Ai(7),r] J d1 to Gi m-4 to

5 lim C pt AXi (r) 11 dri - a to

=0,

since AXi(t) vanishes uniformly in t. By applying this result to (5.2),
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we have
t t

lim 1f F[MXi(7,), ]dT = F[M(),r] d .
i to to

Therefore M(t) is a solution of the Riccati equation for t in [to ,t'].

It was shown above that (MX(t)) is equicontinuous for all t in

[to ,t'). We now demonstrate that under certain conditions, ( Mk(t) is

equicontinuous for t = t'.

Lemma 5.2. Let ( MX(t)] be the totality of finite solutions of the

Riccati equation corresponding to the (non-singular) initial

conditions (M>(to) ] . If

t (k+1)t (k+,) k+l)t (k+l)

sup d = N<()N<
to stst t o dk () 

(5.3)

then the set C Mk(t)} is equicontinuous from the left for t = t'.

Proof. Let
f [ (k+1)

0(k+1)

and

(k+1)

(k+1)

Let Z(t) be a fundamental matrix solution of the 2n-th order

linear differential equation

Z(t) df(t ) Z(t) , (5.4)
k\L
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and partition Z(t) into n-th order square submatrices asZ, zz
Z= .

Z3 Z4

We show first that

lim Z(t) = Z-
t -t'

exists, where the above expression defines Z-.

Let the 2n-vector z(t) be any column of Z(t), and define a

scalar w(t) as

w(t) = gt(t) z(t) , (5.5)

and a scalar wo(t) as

wo (t) = gt(t) z(t o ) (5.6)

Then (5.4) becomes

d -( t)

which may be integrated as follows:

t
z(t) = z(t o ) + ( w(') dr . (5.8)

to

Pre-multiplying (5.8) by gt (t) yields

w(t) = wo(t) + t td )d , (5.9)w•t) W) (M) d,

a Volterra integral equation which must be solved to obtain w(t).

According to (5.6), w(t) depends on the choice of initial value z(t o ).
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The vector z(t) may be determined from z(to) and w(t) by (5.8). By

choosing 2n linearly independent initial valuez z(to), 2n functions

z(t) may be generated which are linearly independent on [t o ,t]. Thus,

solutions w(t) of (5.9) will determine a fundamental matrix Z(t). We

must therefore determine the existence and uniqueness of solutions of

(5.9) on the interval [t o , t'].

Denote the kernel of the integral equation (5.9) by

Sg (t) f(7)K(t,7) = dk

and consider the integral operation

t
v(t) = J K(t,7) w(r) d + wo(7) = Aw

to

Let wl(t) and w?(t) be continuous functions defined on [t o ,t'] and let

m = sup Iwi(t) - wz(t)I
to < t 5t'

From the hypothesis of the Lemma,

t
IAw,(t) - Aw,(t) = t K(t,r) [w(7T) - w(7) ]d

to

t
S IK(t,r)I WI(r)-w (7) d7

m N< , (5.10)

where, from (5.3),

N t sup t' t K(t,)I dI . (5.10Oa)

to a fundamental matrixt' to
However, the existence of a fundamental matrix Z(t) in a neighborhood



119

of the singular point t' is unaffected by multiplication of the co-

efficient matrix in (5.4) by a scalar constant, since such a transfor-

mation of the coefficient matrix merely produces a linear scaling of

the time axis. Such a constant may be chosen so that N < 1. Thus,

from (5. 10), the integral operator A is a contraction mapping, and as

is well known [5.2] , a solution w(t) of the Volterra equation (4.19)

exists and is unique on the closed interval [to ,t']. Hence, since

w(t) determines columns of Z(t), the left-hand limit

lim Z(t) = Z- (5.11)
t -t'

exists. We now show that the existence of Z- implies that (MX(t))

is equicontinuous at t = t'.

As is well known, [5.3] , any solution of the Riccatiequation may

be expressed in terms of Z(t) as

M (t) = [Zi(t) MX(to) + Z(t)] [Z 3 (t) M>(to) + Z4 (t) ]-  , (5. 12)

where by assumption, the expression in the right-most bracket is non-

singular for all t in [t o ,t ' ] . Equation (5.11) implies that, for

1 : i r 4,

lim Zi(t) = Zi- (5.13)
t -t'

exists, and from Lemma 5.1,

lim MX(t) = MX
t -t'

exists, where the above limits are taken through values t s t'.
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In order to demonstrate that ( MX(t)) is equicontinuous at t = t',

the difference

SM - MX(t)II (5.14)

must be bounded by some quantity which is independent of X. By

performing elementary algebraic operations on (5.12), we obtain the

following expression for the difference (5.14):

M - MX(t) II = II ((Zi - Zi(t)) Mx(to) + (Zz -Za(t)) - MX [(Z 3 -Z3 (t))MX(to)

+ (z - Z4 (t)) ] [Z 3(t) Mx(to) + Z4(t) ]- j . (5.15)

Let

S1 = sup MX

1
S2 = sup sup [Z 3 (t) MX(t)+ Z4 (t)T -

X t o :5 t  t'

and

S3 = sup M (to)

Lemma 5.1 and (5.13) imply that S1, Sz and S3 are finite. For 1 < is 4,

let

Zi - Zi ( t )  
= ti(t) ,

where (5.13) implies that

lim i i (t) = 0 . (5.16)
t -t'

In terms of the quantities just defined, (5.15) may be expressed as

MII -M(t) II' E(t) SzS 3 + E2 (t) SZ + C3 (t) SISS 3 + C4(t) SIS,

= (t) , (5.17)
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where (5.17) introduces the quantity c(t). From (5.16),

lim u(t) = 0
t -t'

and moreover, c(t) is independent of X. Therefore the set (Mx(t)}

is equicontinuous at t = t'. Since it was established previously that

the set is equicontinuous on [t o ,t'), it follows that (Mx(t)} is

equicontinuous for all t in [ t o t' ].

The hypothesis (5.3) of Lemma 5.2 is a reasonable requirement

to assure equicontinuity of (MX(t) since

K(t,t) = 0

for t in [t o ,t') and

lim K(t' ,t)
t -t'

is generally indeterminate. It must be emphasized however, that

condition (5.3) is sufficient, but not necessary. For example, the auto-

correlation function considered in Example 2.1 fails to satisfy (5.3),

although the covariance M(t) in (2.34) is everywhere continuous. The

following example illustrates a case for which (5.3) is satisfied.

Example 5.1. Let

r(t, 7) = t 2 (1+1)r2 , for t> 7

Then

O(t) = t z

and

Y(t) =(1 + t)t
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The index function d (t) may be computed as

d (t) = t4

and the kernel K(t,7) as

K(t ,) = (2t+ 3t Z) 27 - 2t(27+ 372 )
K(t, 7) = 4 .

The Riccati equation corresponding to r(t,7) has one singular point

located at t = 0. If to is chosen close to t then K(t,7) does not

change sign for to 5 7 T t. Therefore

SK(t,)dl d = Sr K(t, ) Id = 3 t(t1 -2 t,)
to to to

which is finite for all t s 0

The following Lemma will complete the discussion of the behavior

of the Riccati equation on the interval T, for which t < t'.

Lemma 5.3. Let r(t,7) satisfy the hypotheses of Lemmas 5.1 and

5.2, and also satisfy (5.3). Assume that

rk(t ) Rk (t ) kt(t)

is continuous at t = t'. Let ( M- } be the set of matrices satisfying

lim M (t) = M
t- t'

where ( MX(t) } is the totality of non-singular solutions of the Riccati

equation, and let (Ma(t') } be the set of all non-singular matrices satis-

fying (3.22). Then, the set (MX ) is dense in the set CM (t') .
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Proof. Let M (t') be any covariance matrix satisfying (3.22).

From Corollary 3.4, any matrix satisfying (3.22) may be written as

TkR ' kt + N, where N is a covariance satisfying N 'k = 0. By

assumption, rkRk Ik and 4k are continuous. Hence, given any

es >0, there exists a 6 > 0 and a covariance matrix MX(to) satisfy-

ing (3.22) such that I Mg (t') - MX(to) 11< es , for all to for which

to - t ' I < 6. The matrix Mx(to) may be regarded as an initial

condition associated with a solution MX(t) of the Riccati equation.

From Lemma 5.1,

lim MX(t) = M
t -t'

and from Lemma 5.2,

IIM - MX (to)II <

independent of X, for Ito - t' < 6.

From the triangle inequality [5.2] ,

II M(t') - MX IIM (t') - MX(to) I + IM (to) - MX II

where c and cs may be made arbitrarily small by letting to approach

t'. Hence, the assertion is proved.

We now investigate solutions of the Riccati equation in the

interval T2 where t > t' , and will show that, for M(t) non-singular,

Lemmas 5.1, 5.2, and 5.3 remain valid if the Riccati equation is

integrated backwards, i.e., in the direction of decreasing time.
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It will be convenient for the present discussion to reformulate

the factorization problem in terms of an anti-causal, i.e., purely

anticipative, shaping filter. Let the shaping filter be represented by

x(t) = 0 (t) u(t) (5.18a)

y(t) = t(t) x(t) , (5.18b)

where 3 , 7, and x are n-vectors, and u is scalar-valued white-noise.

By a method analogous to that employed in Section 2.2, (5.18a) may be

integrated backwards to yield the following expression for the covariance

of the state-variable x(t).

max(t, 7)

M [max(t,7)]= E [x(t) xt( )]= M (to) + ) 0t( )d>, (5.19)to

for t. and r7 ' to . The method used to prove Lemma 2.1 may be applied

to the matrix M*, introduced above, to show that M* is non-negative

definite and non-increasing.

In terms of M , the autocorrelation function of y(t) may be

expressed as

r(t,r) = 7t(t) M [max (t,T)] (7)

But, from condition Al,

t (t) 7r) for t > 7
r(t, ) =

t (7r) (t) for t < 7

Therefore, we may identify

0(t) = M*(t) Y(t) (5.20)
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By comparing (5.20) and (2.26), M(t) and M (t) are related by

M (t) = M (t)

provided that M(t) and M*(t) are non-singular.

A matrix Riccati equation may be formulated for M* which is

similar to (3.21) except that the functions 0(k+1) and y(k+ 1 ) are inter-

changed. The index functions di are unchanged. An initial condition

for this Riccati equation must satisfy

k (to) = M*(to) r'k(to) ,

and if the Riccati equation is integrated backwards, the solution M*(t)

will solve the factorization problem.

The global existence of M*(t), for t : to , follows from considera-

tions analogous to those in Section 4.1.

If the Riccati equation has a singular point at t = t', then

Lemma 5.1 implies that the right-hand limit

lim M*(t) = M +

t -t'

exists and is finite. If M* (t) is non-singular, then M ' + is non-singular,

since M*(t) is non-increasing. We may then define a positive definite

matrix M+ as

M+ = (M*+) -  .

If the set (M (t)) is the totality of finite solutions of the Riccati equation

in the interval TZ corresponding to non-singular initial conditions, then

the analogue of Lemma 5.3 states that the set ( M X is dense in the set
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fM (t')) of non-singular covariance matrices satisfying (3.22). Note that

in Tz, the limits of integration in (5.3) must be interchanged, so that

t' ! t ! t o

Having established the validity of Lemmas 5.1 - 3 on both intervals

T1 and T2 , the main result of this section is stated below.

Theorem 5.1. Define intervals Ti and Tz as Ti = (a,t') and T? = (t' ,b).

Let r(t,7) satisfy conditions Al -A5 on Ti and Tz, and let dk(t') = 0.

Furthermore, let r(t,7) satisfy (5.3) in T2 .

Let Mo be a non-singular covariance matrix satisfying (3.22).

Then there exists an admissible matrix M(t) which is continuous and

satisfies

r k (t) = M(t) Qk(t)

for all t in [t o , b), where M(to) = M o , for to in T 1.

Proof. If M(t) is the solution of the Riccati equation in Ti corresponding

to the initial condition Mo , then M(t) exists and is continuous in [t o ,t' ]

and satisfies k(t) = M(t)4k(t) for t in [to,t'). But rk(t) and (k(t)

are continuous on to , t'], so that

Fk(t') = M 4-k(t')

where

lim M(t) = M-
t -t'

M- is non-singular since M(t) is admissible and Mo is non-singular.

Lemmas 5.2, 5.3, and the previous discussion imply that the totality
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of solutions on Tz, (MX(t)) are equicontinuous on Tz, and for any f> 0,

there exists a X such that

I + -M -<e ,

where MX is the right-hand limit

+
lim M (t) = MX
t -t'

From the Ascoli lemma, there exists a uniformly convergent subsequence

MXi(t) on T2 such that

+
lim Mi = M

and lim Mi (t) converges uniformly to a solution of the Riccati equation
i -4.

on T2 , and

lim lim MXi(t) = M
t-t' i -*

Therefore, the solution M(t) has been extended continuously past the

singular point t=t'. Hence M(t) exists and is continuous for all t in

[t o , Ib).

It should be emphasized that equicontinuity was established only as

a sufficient and convenient means for producing the desired result. Equi-

continuity is not necessary. For example, in the first-order case, the

unique solution of the factorization problem is given by M(t) = y(t)/r(t,t).

Since there is only one solution, it is meaningless to try to establish

equicontinuity of the totality of solutions by requiring (5.3) to hold.

Indeed, for Example 2.1, (5.3) is violated. Clearly, in the first-order
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case, the necessary and sufficient condition that M(t) be defined and

continuous at a singular point is that y 2(t)/r(t,t) be defined and continu-

ous at the singular point.
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5.2 Riccati Equation Undefined on an Interval

Assumptions Al - A5 were shown to be sufficient to insure that

the factorization problem has a solution. In particular, assumption A5

allows the formulation of the Riccati equation, a solution of which was

shown to provide the desired factorization. However, according to

Lemma 3.5, if df(t) = 0 for all t in T, and for 0 :5i n-1, then

d (t) = 0 for all t in T, and for all i > 0. In such a case, it is not

possible to define the Riccati equation on T, and the factorization

problem must be solved by other means. It will be shown below that the

factorization problem may be solved algebraically, and the solution is a

covariance matrix M(t), which is constant on the interval T.

In order to motivate the main Theorem of this section, the follow-

ing Lemmas will be proved.

Lemma 5.4. Let r(t,7) satisfy conditions Al -A4, and let di(t) = 0

for t in T, and for 0 ! i 5 k-1. If the processes y(O)(t), y(1)(t), . . ,

y(k)(t), are linearly dependent at each t in a subinterval T' of T,

then d(t) = 0 for t in T' . Furthermore, if 0(t) and Y(t) are each n

times differentiable, then under the previous hypotheses, d(t) = 0

for t in T', and for 0 : i : n-1.

Proof. The proof is a straightforward extension of the proofs of

Lemmas 3.4 and 3.5.

As before, let Yk(t) = col [ y(O(t), y( (t), ... y(k) (t) 
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The assumption of Lemma 5.4 states that there exists a vector a(t) of

dimension k+ 1 such that

a (t) Yk(t) = 0

for t in T'. As in the proof of Lemma 3.4, the above expression may be

differentiated, and assuming without loss of generality that the coefficient

of y(k) (t), ak(t) = 1 for t in T', an expression for y(k+l)(t) may be

derived as a linear combination of the processes y(i)(t), for 0 ! i ! k.

Therefore, y k+)(t) exists, and from Corollary 3.1, dk(t) = 0 on T'.

The above argument implies that there exists vector b(t) of

dimension k+2, such that the (k+2)-nd coefficient bk+1 (t) is unity on

T', and such that

bt(t) Yk+l (t) = 0

for t in T'. Differentiating the above expression yields an expression

for y (k+z(t). Since O(t) and Y(t) are continuously differentiable n

times by assumption, the function df+ 1 (t) exists, and from Corollary 3.1,

must vanish. Continuing the above argument by induction, proves

the assertion.

The following Lemma provides a weak converse to Lemma 5.4.

Lemma 5.5. Let r(t,r) satisfy conditions Al -A3, let ¢(t) and y(t),

which are not identically zero be continuously differentiable n times,

and let d (t) = 0 for t in T, and for 0 : i : n-1. Then, there exists an

integer k, where 0 s k < n-l, such that the matrix Ri(t) has rank k+1
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for all t in a subinterval T' of T, where k : i < n-l.

Proof. According to Lemma 5.4, if the components of the vector Yj(t)

are linearly dependent at each t in an interval T', then the components

of the vector YC(t), for 1 j, are linearly dependent at each t in T'.

Let k be the largest integer for which the components of Yk(t') are

linearly independent for some t' in T, such that the -components of

Yk+ 1(t) are linearly dependent in a neighborhood of t'. Clearly, such an

integer must exist,since by assumption the given random process y(t)

does not vanish everywhere on T.

The integer k is thus determined,and. the matrix Rk(t') has rank k+1 at

the point t' in T, and is therefore non-singular. Since Rk(t) is continu-

ous, there exists a subinterval T' of T, continaing the point t', on

which Rk(t) is non-singular, and such that Rk+i(t) has rank k+l on T'.

From the previous Lemma, Ri(t) has rank k+l on T for k : i ! n-1.

It will be shown in the following Theorem that the matrix Rk(t) may

be used to determine algebraically a solution of the factorization problem.

Theorem 5.2. Let r(t,7) satisfy conditions Al -A4, and assume that

the matrices Rk(t) and Rk+ 1 (t) have rank k+l everywhere on an interval

T'. Let a matrix M(t) be defined as

M(t) = Tk(t) R~1 (t) rkt(t)

Then M(t) is admissible. and satisfies
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Pk(t) = M(t) Ok(t)

for t in T', and therefore, M(t) provides a solution of the factorization

problem.

Proof. Since Rk(t) and Rk+l (t) both have rank k+1 on T', then y k+l)(t)

may be expressed as a linear combination of the processes y(i)(t), where

0 : i sk, for t in T'. This linear combination may be expressed as

Yk(t) = A(t) Yk(t) , (5.21)

for some matrix A(t). Post-multiplying (5.21) by Yk t (7), and taking the

expectation of the result, yields

Rk(t, T) = A(t) Rk(t,~) , (5.22)

where

t
Rk(t, ) = E Yk(t) Ykt(r)] . (5.23)

Transposing (5.22), and noting that

Rk (t, 7) = Rk(,'t)

yields

-Rk(t,7) = Rk(t,7) At(7) . (5.24)

For t> r7,

Rk(t,7) = Dkt (t) rk( ')

tThe definition of Rk(t) in (3.5) coincides with Rk(t,r) defined by (5.23),

for 7 = t.
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and from equation (5.24),

-Rk(t,7 ) = kt(t) = k ( k k (t) TIk()At(r) . (5.25)

Since the concluding: discussion of Section 2. 2.impli.es without loss

of generality, that, the component functions 01(t), . . 0 n(t) may be

assumed linearly independent functions on the interval T', (5.25) yields

k = kA t . (5.26)

Define M(t) as

M(t) = rk(t) Rkl (t) Tk(t) . (5.27)

Clearly, M(t) is defined for all t in T'. From the proof of Theorem 3.4,

M(t) so defined is a covariance matrix and satisfies .

rk (t) = M(t) 'k (t)

for all t in T'. In order to show that M(t) is admissible, it must be

established that M(t) is non-decreasing. We show below that M(t) is

constant for t in T' and is therefore non-decreasing.

Differentiating (5.27) yields

M = -F k Rk' RkR + k kR t + ' k R k . (5.28)

However, the derivative Rk(t) may be expressed as

d a a
Rk(t) = dt Rk(t,t) = Rk(t,) + --- Rk(t,

T =t a =t

= A(t) Rk(t) + Rk(t) At (t) . (5.29)

Substituting (5.26) and (5.29) into (5.28) yields

M = -rk R-' ARk R RRkAtR k +kAt R- kt k+ kR' Arkt

0
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for all t in T'. Therefore M is an admissible matrix and r(t,7) may be

expressed as

r(t,7) = ¢t(t) MO(7) (5.30)

Since M is constant, the shaping filter has the form

x= 0

y = Otx , (5.31)

where the initial state x o is a random variable with covariance matrix M

defined by equation (5.27), and x(t) = xo . Furthermore, since the rank of

M is k+1, the shaping filter may be reduced to one of order k+l. Let S

represent the constant unitary matrix which diagonalizes M, so that

M A 0]
M=S S ,

0 0

where A = diag [X1, ... Xk+l ], and the scalars Xi are the k+1 non-zero

eigenvalues of M. Since M is non-negative definite, Xi >0 for 1 5i k+1.

Let S1 represent the submatrix of S which consists of the first k+1 rows

of S, and define a vector 0 '(t) as

0 (t) = S1 0(t) .

Note that 0 (t) consists of k+1 components. One may verify in a straight-

forward fashion that

r(t, T) =t (t) M (T) = 0*t (t) A¢0 (7) (5.32)

Therefore, the shaping filter may be represented as
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x = 0

y =¢ x ,

and xW has dimension k+1. The components of the state-vector x* are

random variables xi* such that

( i , for i=j

0 , for ifj

If one desires to approximate an arbitrary continuous autocorrelation

function r(t,7) by one which is separable on a square, T x T, a logical

way to proceed might be to utilize the Karhunen-Loeve expansion: [5.4].

Define a sequence of random variables i as
1

=i (Xi) f y(t) Oi (t) dt
T

where the scalars Xi are eigenvalues and the functions 0i(t) are

orthonormal eigenfunctions of the autocorrelation r(t,T); i.e.,

IT r(t,r) Oi(r) d 7 = Xi 01it)

The random variables i are uncorrelated, and

E[giF = 6ij

A random process Yn(t) may be defined as

n

Yn(t) = i 2  t)
i=1

where

1.i.m Yn(t) = y(t)
n-c

uniformly on T. The autocorrelation function of Yn(t) may be expressed as
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n

E [yn(t)yn(7)] = rn(t,7) = I X(t) 0 i(") (5.33)

i=l

and, by Mercer's Theorem, [5.5],

lim rn(t,T) = r(t,7)
n -=

where the series converges absolutely and uniformly onT x T. The auto-

correlation function rn(t,7) is separable on T XT, and will approximate

r(t,7) with any desired degree of accuracy, provided that n is chosen

sufficiently large.

Theorem 5.2 may be applied to the process Yn(t) in order to obtain

a factorization of rn(t,7,). However, a factorization may be obtained

directly by inspection of (5.33). By setting

M = diag [X, ... Xn] ,

an autonomous shaping filter may be described as in (5.31). Thus, the

Karhunen-Loeve expansion provides a method for approximating an arbitrary

autocorrelation function by another which admits factorization. However,

the autonomy of the resulting shaping may be a disadvantage, especially

for those signal processing applications which require specification of the

whitening filter which inverts the operation of the shaping filter.
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CHAPTER VI

CONCLUSIONS

A shaping filter is a linear system which produces at its output

a possibly nonstationary random process with a given autocorrelation

function if a stationary white noise process is applied at its input.

This investigation was concerned with the synthesis of shaping filters

corresponding to separable and differentiable autocorrelation functions.

The determination of a shaping filter provides a solution of the so-called

factorization problem. The investigation may be regarded as an attempt

to establish a formal realizability theory relating the existence of a

shaping filter to properties which must be satisfied by an autocorrelation

function. The realizability theory is based on a set of conditions (Al - A5)

to be satisfied by the autocorrelation function. If the conditions are

satisfied, real-valued coefficients of the shaping filter may be deter-

mined by solving a matrix Riccati differential equation of order no greater

than the order of the shaping filter.

The model chosen to represent the shaping filter is a set of n

linear differential equations in "state-variable" form without feedback,

and with a single input and single output. Although this form is often

unsuitable for practical simulation, its use is justified in establishing

the realizability theory because of the relative simplicity it offers to the

formulation and solution of the factorization problem. In many cases,
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known techniques of system theory allow the zero-feedback model to be

simulated by more practical configurations.

In order to formulate the Riccati equation leading to the shaping

filter, it was necessary to develop and prove new results concerning the

mean square differentiability of a random process. A non-negative

function d2 (t) derived from the given autocorrelation function was shown

to govern the differentiability properties of the process. Specifically,

dk(t) corresponds to an instantaneous power associated with the white-

noise component of the (k+l)st derivative of the given random process.

Since the inverse function dk2(t) appears as a coefficient of the Riccati

equation, the assumption that dk(t) does not vanish guarantees the

existence of the Riccati equation. It was demonstrated in Chapter III

that there exists a solution of the Riccati equation which, in turn, solves

the factorization problem. By utilizing a set of k+l linear constraints

developed in the same chapter, it was shown that the order of the

Riccatiequation may be reduced from n to n-k-l.

Conditions which are sufficient to insure a global solution of the

Riccati equation and hence, of the factorization problem, were developed

by placing an upper bound on the initial condition associated with the

Riccati equation. Furthermore, it was demonstrated by example that the

finite escape time phenomenon and the asymptotic behavior of solutions

of the Riccati equation may bear an interesting relation which should be

explored in future research.
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A particularly important global property of the shaping filter is

stability. Stability was defined in the sense that a square-integrable

input produces a bounded output. This type of stability is directly

related to salient properties of the given autocorrelation function. If

the autocorrelation function is uniformly bounded, the shaping filter will

be stable in the sense described provided that the conditions for a global

solution of the Riccati equation are also satisfied.

One of the most interesting results obtained here provides a

characterization of the autocorrelation functions which admit factori-

zation. The characterization employs a set of easily applied criteria

which do not depend explicitly on the non-negative definite condition

which, as is well-known, must be satisfied by an autocorrelation function.

In Chapter V, the class of autocorrelation functions under con-

sideration was broadened by admitting processes for which d(t)

vanishes at an isolated point, and processes for which d\(t) vanishes

for all k and for all t. In the former case, the Riccati equation has an

isolated singular point. Sufficient conditions were established allowing

the Riccati equation to have a solution which is defined and continuous

at the singular point. In the latter case, the factorization problem may

be solved by algebraic means. Autocorrelation functions in the latter

category include those corresponding to random processes which may be

represented exactly by a truncated Karhunen-Loeve expansion.

Thus, a realizability theory has been presented which defines a
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large class of autocorrelation functions and establishes the existence

of the corresponding shaping filters. Moreover, the theory provides a

means for determining the coefficients of the shaping filters. The class

of autocorrelation functions under consideration is primarily limited by

the assumptions of separability and differentiability. Separability is a

necessary condition for realizing a shaping filter in state-variable form.

Differentiability is only a sufficient condition, although it is a physically

reasonable one. Future research may be directed toward weakening the

differentiability assumption. For example, progress in this direction

might lead to shaping filters with piecewise differentiable, or switched,

coefficients.
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